import matplotlib.pyplot as pyplot import seaborn import pandas workspace = "/home/toshuumilia/Workspace/SML/" # Insert the working directory here. datasetPath = workspace + "data/sms.tsv" # Tells where is located the data # Experiment location # Graphs parameters globalFigsize = (12, 6) # Comparison Experiment # # # experimentOneDF = pandas.read_csv(experimentOnePath) # # seaborn.set_style("darkgrid") # pyplot.figure(figsize=globalFigsize) # seaborn.barplot(x="Value", y="Measure", hue="Method", # data=experimentOneDF) # pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # pyplot.ylabel('Measure', fontsize=12) # pyplot.xlabel('Value', fontsize=12) # pyplot.xlim(0.5, 1) # pyplot.title('Performance comparison between four learning methods', fontsize=15) # pyplot.show() # Decision Tree # # Depth Experiment # # experimentDTDepthDF = pandas.read_csv(workspace + "results/experimentDTDepth.csv") # # seaborn.set_style("whitegrid") # pyplot.figure(figsize=globalFigsize) # seaborn.barplot(x="Value", y="Measure", hue="Depth", # data=experimentDTDepthDF) # pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # pyplot.ylabel('Measure', fontsize=12) # pyplot.xlabel('Value', fontsize=12) # pyplot.xlim(0.5, 1) # pyplot.title('Performance comparison of a Decision Tree relative to a maximum depth', fontsize=15) # pyplot.show() # Criterion Experiment # # experimentDTCriterionDF = pandas.read_csv(workspace + "results/experimentDTCriterion.csv") # # seaborn.set_style("whitegrid") # pyplot.figure(figsize=globalFigsize) # seaborn.barplot(x="Value", y="Measure", hue="Criterion", # data=experimentDTCriterionDF) # pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # pyplot.ylabel('Measure', fontsize=12) # pyplot.xlabel('Value', fontsize=12) # pyplot.xlim(0.5, 1) # pyplot.title('Performance comparison of a Decision Tree relative to a splitting quality criterion', fontsize=15) # pyplot.show() # MinSampleSplit Experiment # # experimentDTMinSampleSplitDF = pandas.read_csv(workspace + "results/experimentDTMinSampleSplit.csv") # # seaborn.set_style("whitegrid") # pyplot.figure(figsize=globalFigsize) # seaborn.barplot(x="Value", y="Measure", hue="MinSampleSplit", # data=experimentDTMinSampleSplitDF) # pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # pyplot.ylabel('Measure', fontsize=12) # pyplot.xlabel('Value', fontsize=12) # pyplot.xlim(0.5, 1) # pyplot.title('Insert Title', fontsize=15) # pyplot.xticks(rotation='vertical') # pyplot.show() # MaxFeature Experiment # # experimentDTMaxFeatureDF = pandas.read_csv(workspace + "results/experimentDTMaxFeature.csv") # # seaborn.set_style("whitegrid") # pyplot.figure(figsize=globalFigsize) # seaborn.barplot(x="Value", y="Measure", hue="MaxFeature", # data=experimentDTMaxFeatureDF) # pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # pyplot.ylabel('Measure', fontsize=12) # pyplot.xlabel('Value', fontsize=12) # pyplot.xlim(0.5, 1) # pyplot.title('Insert Title', fontsize=15) # pyplot.xticks(rotation='vertical') # pyplot.show() # MaxLeafNodes Experiment # experimentDTMaxLeafNodesDF = pandas.read_csv(workspace + "results/experimentDTMaxLeafNodes.csv") # # seaborn.set_style("whitegrid") # pyplot.figure(figsize=globalFigsize) # seaborn.pointplot(y="Value", hue="Measure", x="MaxLeafNodes", # data=experimentDTMaxLeafNodesDF) # pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # pyplot.ylabel('Measure', fontsize=12) # pyplot.xlabel('Value', fontsize=12) # pyplot.xlim(0.5, 1) # pyplot.title('Insert Title', fontsize=15) # pyplot.xticks(rotation='vertical') # pyplot.show() # MinImpurityDecrease Experiment # # experimentDTMinImpurityDecreaseDF = pandas.read_csv(workspace + "results/experimentDTMinImpurityDecrease.csv") # # seaborn.set_style("whitegrid") # pyplot.figure(figsize=globalFigsize) # seaborn.pointplot(y="Value", hue="Measure", x="MinImpurityDecrease", # data=experimentDTMinImpurityDecreaseDF, palette="Greens_d") # pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # pyplot.ylabel('Measure Value', fontsize=12) # pyplot.xlabel('Min Impurity Decrease', fontsize=12) # pyplot.title('', fontsize=15) # pyplot.xticks(rotation='vertical') # pyplot.show() # BasicVsOptimized Experiment experimentDTBasicVsOptimizedDF = pandas.read_csv(workspace + "results/experimentDTBasicVsOptimized.csv") seaborn.set_style("whitegrid") pyplot.figure(figsize=globalFigsize) seaborn.barplot(x="Value", y="Measure", hue="Tuning", data=experimentDTBasicVsOptimizedDF) pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) pyplot.ylabel('Measure', fontsize=12) pyplot.xlabel('Value', fontsize=12) pyplot.xlim(0.5, 1) pyplot.title('Insert Title', fontsize=15) pyplot.xticks(rotation='vertical') pyplot.show()