Experiment: Decision Tree code finished

master
Gregory Martin 2017-11-08 16:48:42 +01:00
parent 2fb57232fc
commit 2ac14e25a5
17 changed files with 2362 additions and 104 deletions

View File

@ -1535,7 +1535,9 @@
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# make class predictions for X_test_dtm\n",

View File

@ -10,18 +10,20 @@
<option name="LAST_RESOLUTION" value="IGNORE" />
</component>
<component name="CoverageDataManager">
<SUITE FILE_PATH="coverage/SML_Homework$experimentMethod.coverage" NAME="experimentMethod Coverage Results" MODIFIED="1510156033648" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/learningmethod" />
<SUITE FILE_PATH="coverage/Experiments$decisiontree.coverage" NAME="decisiontree Coverage Results" MODIFIED="1509983854236" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/learningmethod" />
<SUITE FILE_PATH="coverage/SML_Homework$decisiontree.coverage" NAME="decisiontree Coverage Results" MODIFIED="1510053710829" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/learningmethod" />
<SUITE FILE_PATH="coverage/SML_Homework$experimentDT.coverage" NAME="experimentDT Coverage Results" MODIFIED="1510155989418" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/learningmethod" />
<SUITE FILE_PATH="coverage/Experiments$example.coverage" NAME="example Coverage Results" MODIFIED="1509983601618" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/sml_learningmethod" />
<SUITE FILE_PATH="coverage/SML_Homework$experimentOne.coverage" NAME="experimentOne Coverage Results" MODIFIED="1510061287176" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/learningmethod" />
<SUITE FILE_PATH="coverage/SML_Homework$experimentOne.coverage" NAME="experimentOne Coverage Results" MODIFIED="1510068084362" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/learningmethod" />
</component>
<component name="FileEditorManager">
<leaf SIDE_TABS_SIZE_LIMIT_KEY="300">
<file leaf-file-name="experimentOne.py" pinned="false" current-in-tab="true">
<entry file="file://$PROJECT_DIR$/learningmethod/experimentOne.py">
<file leaf-file-name="experimentMethod.py" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/learningmethod/experimentMethod.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="710">
<caret line="134" column="36" lean-forward="false" selection-start-line="134" selection-start-column="36" selection-end-line="134" selection-end-column="36" />
<state relative-caret-position="315">
<caret line="99" column="0" lean-forward="true" selection-start-line="99" selection-start-column="0" selection-end-line="99" selection-end-column="0" />
<folding>
<element signature="e#0#52#0" expanded="true" />
</folding>
@ -29,11 +31,43 @@
</provider>
</entry>
</file>
<file leaf-file-name="showGraph.py" pinned="false" current-in-tab="false">
<file leaf-file-name="experimentDT.py" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/learningmethod/experimentDT.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="3825">
<caret line="255" column="29" lean-forward="false" selection-start-line="255" selection-start-column="29" selection-end-line="255" selection-end-column="29" />
<folding>
<element signature="e#0#52#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
</file>
<file leaf-file-name="experimentLR.py" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/learningmethod/experimentLR.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="0">
<caret line="0" column="0" lean-forward="false" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" />
<folding />
</state>
</provider>
</entry>
</file>
<file leaf-file-name="experimentNN.py" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/learningmethod/experimentNN.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="0">
<caret line="0" column="0" lean-forward="false" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" />
<folding />
</state>
</provider>
</entry>
</file>
<file leaf-file-name="showGraph.py" pinned="false" current-in-tab="true">
<entry file="file://$PROJECT_DIR$/learningmethod/showGraph.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="135">
<caret line="9" column="0" lean-forward="true" selection-start-line="9" selection-start-column="0" selection-end-line="9" selection-end-column="0" />
<state relative-caret-position="205">
<caret line="130" column="26" lean-forward="true" selection-start-line="130" selection-start-column="26" selection-end-line="130" selection-end-column="26" />
<folding>
<element signature="e#0#34#0" expanded="true" />
</folding>
@ -60,8 +94,12 @@
<option value="$PROJECT_DIR$/learningmethod/learningmethod.py" />
<option value="$PROJECT_DIR$/learningmethod/environment.py" />
<option value="$PROJECT_DIR$/learningmethod/settings.py" />
<option value="$PROJECT_DIR$/learningmethod/showGraph.py" />
<option value="$PROJECT_DIR$/learningmethod/experimentOne.py" />
<option value="$PROJECT_DIR$/learningmethod/showGraph.py" />
<option value="$PROJECT_DIR$/learningmethod/experimentDT.py" />
<option value="$PROJECT_DIR$/learningmethod/experimentLR.py" />
<option value="$PROJECT_DIR$/learningmethod/experimentNN.py" />
<option value="$PROJECT_DIR$/learningmethod/experimentMethod.py" />
</list>
</option>
</component>
@ -149,7 +187,7 @@
</list>
</option>
</component>
<component name="RunManager" selected="Python.experimentOne">
<component name="RunManager" selected="Python.experimentMethod">
<configuration default="true" type="PyBehaveRunConfigurationType" factoryName="Behave">
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
@ -291,7 +329,7 @@
<option name="_new_target" value="&quot;&quot;" />
<option name="_new_targetType" value="&quot;PATH&quot;" />
</configuration>
<configuration name="experimentOne" type="PythonConfigurationType" factoryName="Python" temporary="true">
<configuration name="experimentDT" type="PythonConfigurationType" factoryName="Python" temporary="true">
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
@ -304,14 +342,37 @@
<option name="ADD_SOURCE_ROOTS" value="true" />
<module name="SML-Homework" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" enabled="false" sample_coverage="true" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/learningmethod/experimentOne.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/learningmethod/experimentDT.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
</configuration>
<configuration name="experimentMethod" type="PythonConfigurationType" factoryName="Python" temporary="true">
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="/usr/bin/python3.5" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/learningmethod" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<module name="SML-Homework" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" enabled="false" sample_coverage="true" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/learningmethod/experimentMethod.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
</configuration>
<list size="2">
<item index="0" class="java.lang.String" itemvalue="Python.experimentDT" />
<item index="1" class="java.lang.String" itemvalue="Python.experimentMethod" />
</list>
<recent_temporary>
<list size="1">
<item index="0" class="java.lang.String" itemvalue="Python.experimentOne" />
<list size="2">
<item index="0" class="java.lang.String" itemvalue="Python.experimentMethod" />
<item index="1" class="java.lang.String" itemvalue="Python.experimentDT" />
</list>
</recent_temporary>
</component>
@ -336,14 +397,14 @@
<window_info id="TODO" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="6" side_tool="false" content_ui="tabs" />
<window_info id="Event Log" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.3283582" sideWeight="0.50292826" order="7" side_tool="true" content_ui="tabs" />
<window_info id="Database" active="false" anchor="right" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="3" side_tool="false" content_ui="tabs" />
<window_info id="Version Control" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="false" weight="0.33" sideWeight="0.5" order="7" side_tool="false" content_ui="tabs" />
<window_info id="Python Console" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="7" side_tool="false" content_ui="tabs" />
<window_info id="Run" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.3283582" sideWeight="0.49707174" order="2" side_tool="false" content_ui="tabs" />
<window_info id="Version Control" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="false" weight="0.33" sideWeight="0.5" order="10" side_tool="false" content_ui="tabs" />
<window_info id="Python Console" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="8" side_tool="false" content_ui="tabs" />
<window_info id="Run" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="true" show_stripe_button="true" weight="0.3283582" sideWeight="0.49707174" order="2" side_tool="false" content_ui="tabs" />
<window_info id="Structure" active="false" anchor="left" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.25" sideWeight="0.5" order="1" side_tool="false" content_ui="tabs" />
<window_info id="Terminal" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="7" side_tool="false" content_ui="tabs" />
<window_info id="Terminal" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="9" side_tool="false" content_ui="tabs" />
<window_info id="Favorites" active="false" anchor="left" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="2" side_tool="true" content_ui="tabs" />
<window_info id="Debug" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.4" sideWeight="0.5" order="3" side_tool="false" content_ui="tabs" />
<window_info id="Data View" active="false" anchor="right" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="3" side_tool="false" content_ui="tabs" />
<window_info id="Data View" active="false" anchor="right" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="4" side_tool="false" content_ui="tabs" />
<window_info id="Cvs" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.25" sideWeight="0.5" order="4" side_tool="false" content_ui="tabs" />
<window_info id="Message" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="0" side_tool="false" content_ui="tabs" />
<window_info id="Commander" active="false" anchor="right" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.4" sideWeight="0.5" order="0" side_tool="false" content_ui="tabs" />
@ -385,25 +446,51 @@
</entry>
<entry file="file://$PROJECT_DIR$/learningmethod/learningmethod.py" />
<entry file="file://$PROJECT_DIR$/learningmethod/settings.py" />
<entry file="file://$PROJECT_DIR$/learningmethod/showGraph.py">
<entry file="file://$PROJECT_DIR$/learningmethod/experimentNN.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="135">
<caret line="9" column="0" lean-forward="true" selection-start-line="9" selection-start-column="0" selection-end-line="9" selection-end-column="0" />
<folding>
<element signature="e#0#34#0" expanded="true" />
</folding>
<state relative-caret-position="0">
<caret line="0" column="0" lean-forward="false" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" />
<folding />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/learningmethod/experimentOne.py">
<entry file="file://$PROJECT_DIR$/learningmethod/experimentLR.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="710">
<caret line="134" column="36" lean-forward="false" selection-start-line="134" selection-start-column="36" selection-end-line="134" selection-end-column="36" />
<state relative-caret-position="0">
<caret line="0" column="0" lean-forward="false" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" />
<folding />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/learningmethod/experimentDT.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="3825">
<caret line="255" column="29" lean-forward="false" selection-start-line="255" selection-start-column="29" selection-end-line="255" selection-end-column="29" />
<folding>
<element signature="e#0#52#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/learningmethod/experimentMethod.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="315">
<caret line="99" column="0" lean-forward="true" selection-start-line="99" selection-start-column="0" selection-end-line="99" selection-end-column="0" />
<folding>
<element signature="e#0#52#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/learningmethod/showGraph.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="205">
<caret line="130" column="26" lean-forward="true" selection-start-line="130" selection-start-column="26" selection-end-line="130" selection-end-column="26" />
<folding>
<element signature="e#0#34#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
</component>
</project>

View File

@ -0,0 +1,294 @@
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
import pandas
from pandas import DataFrame
import numpy
import os
workspace = "/home/toshuumilia/Workspace/SML/" # Insert the working directory here.
datasetPath = workspace + "data/sms.tsv" # Tells where is located the data
smsCount = 5574
if not os.path.exists(workspace + "results/"):
os.makedirs(workspace + "results/")
###################
# Loading dataset #
###################
smsDF = pandas.read_table(datasetPath, header=None, names=["label", "message"])
smsDF["label_numerical"] = smsDF.label.map({"ham": 0, "spam": 1})
smsDataset = smsDF.message
smsLabel = smsDF.label_numerical
methodArray = []
measureArray = []
valueArray = []
availableMeasures = ["Accuracy", "F1Score"]
dataset_train, dataset_test, label_train, label_test = train_test_split(smsDataset, smsLabel, random_state=1)
# Note: DTM=documentTermMatrix
vectorizer = CountVectorizer()
trainDTM = vectorizer.fit_transform(dataset_train)
testDTM = vectorizer.transform(dataset_test)
# DEPTH EXPERIMENT
# availableDepths = [None, 50, 25, 10, 5, 3]
#
# print("Depth Experiment")
# for x in range(0, 4):
# for depth in availableDepths:
# print("Step", x, "for depth:", depth)
# # SEE: http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
# decisionTree = DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=depth,
# min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
# max_features=None, random_state=None, max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,
# presort=False)
# decisionTree.fit(trainDTM, label_train)
#
# label_predicted = decisionTree.predict(testDTM)
#
# # SEE: https://en.wikipedia.org/wiki/Precision_and_recall
# valueArray.append(metrics.accuracy_score(label_test, label_predicted))
# valueArray.append(metrics.f1_score(label_test, label_predicted))
#
# for index in range(0, 2):
# measureArray.append(availableMeasures[index])
# methodArray.append("Depth-" + str(depth))
#
# # Save the experiments
# experimentDTDepthDF = DataFrame()
# experimentDTDepthDF["Measure"] = measureArray
# experimentDTDepthDF["Value"] = valueArray
# experimentDTDepthDF["Depth"] = methodArray
#
# experimentDTDepthDF.to_csv(workspace + "results/experimentDTDepth.csv")
# CRITERION EXPERIMENT
# availableCriterion = ["gini", "entropy"]
#
# methodArray = []
# measureArray = []
# valueArray = []
#
# print("Criteron Experiment")
# for x in range(0, 4):
# for criterion in availableCriterion:
# print("Step", x, "for criterion:", criterion)
# decisionTree = DecisionTreeClassifier(criterion=criterion, splitter='best', max_depth=None,
# min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
# max_features=None, random_state=None, max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,
# presort=False)
# decisionTree.fit(trainDTM, label_train)
#
# label_predicted = decisionTree.predict(testDTM)
#
# valueArray.append(metrics.accuracy_score(label_test, label_predicted))
# valueArray.append(metrics.f1_score(label_test, label_predicted))
#
# for index in range(0, 2):
# measureArray.append(availableMeasures[index])
# methodArray.append("Criterion-" + criterion)
#
# # Save the experiments
# experimentDTCriteronDF = DataFrame()
# experimentDTCriteronDF["Measure"] = measureArray
# experimentDTCriteronDF["Value"] = valueArray
# experimentDTCriteronDF["Criterion"] = methodArray
#
# experimentDTCriteronDF.to_csv(workspace + "results/experimentDTCriterion.csv")
# MIN_SAMPLES_SPLIT EXPERIMENT
# availableMinSampleSplit = [2, 10, 25, 50, 100, 250]
#
# methodArray = []
# measureArray = []
# valueArray = []
#
# print("MinSampleSplit Experiment")
# for x in range(0, 20):
# for minSampleSplit in availableMinSampleSplit:
# print("Step", x, "for minSampleSplit:", minSampleSplit)
# decisionTree = DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None,
# min_samples_split=minSampleSplit, min_samples_leaf=1,
# min_weight_fraction_leaf=0.0,
# max_features=None, random_state=None, max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,
# presort=False)
# decisionTree.fit(trainDTM, label_train)
#
# label_predicted = decisionTree.predict(testDTM)
#
# valueArray.append(metrics.accuracy_score(label_test, label_predicted))
# valueArray.append(metrics.f1_score(label_test, label_predicted))
#
# for index in range(0, 2):
# measureArray.append(availableMeasures[index])
# methodArray.append("MinSampleSplit-" + str(minSampleSplit))
#
# # Save the experiments
# experimentDTMinSampleSplitDF = DataFrame()
# experimentDTMinSampleSplitDF["Measure"] = measureArray
# experimentDTMinSampleSplitDF["Value"] = valueArray
# experimentDTMinSampleSplitDF["MinSampleSplit"] = methodArray
#
# experimentDTMinSampleSplitDF.to_csv(workspace + "results/experimentDTMinSampleSplit.csv")
# MAX_FEATURE EXPERIMENT
# availableMaxFeature = [None, "sqrt", "log2", 0.25, 0.5, 0.75]
#
# methodArray = []
# measureArray = []
# valueArray = []
#
# print("MaxFeature Experiment")
# for x in range(0, 10):
# for maxFeature in availableMaxFeature:
# print("Step", x, "for MaxFeature:", maxFeature)
# decisionTree = DecisionTreeClassifier(max_features=maxFeature)
# decisionTree.fit(trainDTM, label_train)
#
# label_predicted = decisionTree.predict(testDTM)
#
# valueArray.append(metrics.accuracy_score(label_test, label_predicted))
# valueArray.append(metrics.f1_score(label_test, label_predicted))
#
# for index in range(0, 2):
# measureArray.append(availableMeasures[index])
# methodArray.append("MaxFeature-" + str(maxFeature))
#
# # Save the experiments
# experimentDTMaxFeatureDF = DataFrame()
# experimentDTMaxFeatureDF["Measure"] = measureArray
# experimentDTMaxFeatureDF["Value"] = valueArray
# experimentDTMaxFeatureDF["MaxFeature"] = methodArray
#
# experimentDTMaxFeatureDF.to_csv(workspace + "results/experimentDTMaxFeature.csv")
# MAX_LEAF_NODES EXPERIMENT
# availableMaxLeafNodes = []
# for ratio in numpy.arange(1/6, 1.01, 1/6):
# availableMaxLeafNodes.append(int(ratio * smsCount))
# availableMaxLeafNodes = numpy.concatenate([[2], numpy.arange(10, 270, 10)])
# methodArray = []
# measureArray = []
# valueArray = []
#
# print("MaxLeafNodes Experiment")
# for x in range(0, 5):
# for maxLeafNodes in availableMaxLeafNodes:
# print("Step", x, "for MaxLeafNodes:", maxLeafNodes)
# decisionTree = DecisionTreeClassifier(max_leaf_nodes=maxLeafNodes)
# decisionTree.fit(trainDTM, label_train)
#
# label_predicted = decisionTree.predict(testDTM)
#
# valueArray.append(metrics.accuracy_score(label_test, label_predicted))
# valueArray.append(metrics.f1_score(label_test, label_predicted))
#
# for index in range(0, 2):
# measureArray.append(availableMeasures[index])
# methodArray.append(maxLeafNodes)
#
# # Save the experiments
# experimentDTMaxLeafNodesDF = DataFrame()
# experimentDTMaxLeafNodesDF["Measure"] = measureArray
# experimentDTMaxLeafNodesDF["Value"] = valueArray
# experimentDTMaxLeafNodesDF["MaxLeafNodes"] = methodArray
#
# experimentDTMaxLeafNodesDF.to_csv(workspace + "results/experimentDTMaxLeafNodes.csv")
# MIN_IMPURITY_DECREASE
# availableMinImpurityDecrease = numpy.arange(0., 0.061, 0.005)
#
# methodArray = []
# measureArray = []
# valueArray = []
#
# print("MaxFeature Experiment")
# for x in range(0, 10):
# for minImpurityDecrease in availableMinImpurityDecrease:
# print("Step", x, "for MinImpurityDecrease:", minImpurityDecrease)
# decisionTree = DecisionTreeClassifier(min_impurity_decrease=minImpurityDecrease)
# decisionTree.fit(trainDTM, label_train)
#
# label_predicted = decisionTree.predict(testDTM)
#
# valueArray.append(metrics.accuracy_score(label_test, label_predicted))
# valueArray.append(metrics.f1_score(label_test, label_predicted))
#
# for index in range(0, 2):
# measureArray.append(availableMeasures[index])
# methodArray.append(str(minImpurityDecrease*100) + "%")
#
# # Save the experiments
# experimentDTMinImpurityDecreaseDF = DataFrame()
# experimentDTMinImpurityDecreaseDF["Measure"] = measureArray
# experimentDTMinImpurityDecreaseDF["Value"] = valueArray
# experimentDTMinImpurityDecreaseDF["MinImpurityDecrease"] = methodArray
#
# experimentDTMinImpurityDecreaseDF.to_csv(workspace + "results/experimentDTMinImpurityDecrease.csv")
# DEFAULT DT VS OPTIMIZED DT EXPERIMENT
availableMeasures = ["Precision", "Recall", "Accuracy", "F1Score"]
methodArray = []
measureArray = []
valueArray = []
print("MaxFeature Experiment")
for x in range(0, 20):
print("Step", x, "for Basic Decision Tree")
decisionTree = DecisionTreeClassifier()
decisionTree.fit(trainDTM, label_train)
label_predicted = decisionTree.predict(testDTM)
valueArray.append(metrics.precision_score(label_test, label_predicted))
valueArray.append(metrics.recall_score(label_test, label_predicted))
valueArray.append(metrics.accuracy_score(label_test, label_predicted))
valueArray.append(metrics.f1_score(label_test, label_predicted))
for measure in availableMeasures:
measureArray.append(measure)
methodArray.append("Basic Decision Tree")
print("Step", x, "for Custom Decision Tree")
decisionTree = DecisionTreeClassifier(max_features=0.25, criterion="gini")
decisionTree.fit(trainDTM, label_train)
label_predicted = decisionTree.predict(testDTM)
valueArray.append(metrics.precision_score(label_test, label_predicted))
valueArray.append(metrics.recall_score(label_test, label_predicted))
valueArray.append(metrics.accuracy_score(label_test, label_predicted))
valueArray.append(metrics.f1_score(label_test, label_predicted))
for measure in availableMeasures:
measureArray.append(measure)
methodArray.append("Custom Decision Tree")
# Save the experiments
experimentDTBasicVsOptimizedDF = DataFrame()
experimentDTBasicVsOptimizedDF["Measure"] = measureArray
experimentDTBasicVsOptimizedDF["Value"] = valueArray
experimentDTBasicVsOptimizedDF["Tuning"] = methodArray
experimentDTBasicVsOptimizedDF.to_csv(workspace + "results/experimentDTBasicVsOptimized.csv")

View File

@ -1,10 +1,11 @@
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import MultinomialNB
import pandas
from pandas import DataFrame
@ -13,8 +14,9 @@ import os
workspace = "/home/toshuumilia/Workspace/SML/" # Insert the working directory here.
datasetPath = workspace + "data/sms.tsv" # Tells where is located the data
experimentOnePath = workspace + "experiment/experimentOne.csv" # Location of the first experiment result
if not os.path.exists(workspace + "results/"):
os.makedirs(workspace + "results/")
smsDF = pandas.read_table(datasetPath, header=None, names=["label", "message"])
smsDF["label_numerical"] = smsDF.label.map({"ham": 0, "spam": 1})
@ -26,8 +28,11 @@ methodArray = []
measureArray = []
valueArray = []
availableMeasures = ["Precision", "Recall", "Accuracy", "F1Score"]
availableMethods = ["Decision Tree", "Logistic Regression", "Neural Network", "Naive Bayesian"]
# Simulate ten trees so we can have an average.
for x in range(0, 15):
for x in range(0, 10):
# Create the datasets and the labels used for the ML.
# TODO: Parameter to test: how to split the smsDataset into train and test.
dataset_train, dataset_test, label_train, label_test = train_test_split(smsDataset, smsLabel, random_state=1)
@ -40,98 +45,77 @@ for x in range(0, 15):
# DECISION TREE
# TODO: Explore which parameters could be used.
# SEE: http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
decisionTree = DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None,
presort=False)
decisionTree = DecisionTreeClassifier()
decisionTree.fit(trainDTM, label_train)
label_predicted = decisionTree.predict(testDTM)
# SEE: https://en.wikipedia.org/wiki/Precision_and_recall
valueArray.append(metrics.precision_score(label_test, label_predicted))
measureArray.append("precision")
methodArray.append("Decision Tree")
valueArray.append(metrics.recall_score(label_test, label_predicted))
measureArray.append("recall")
methodArray.append("Decision Tree")
valueArray.append(metrics.accuracy_score(label_test, label_predicted))
measureArray.append("accuracy")
methodArray.append("Decision Tree")
valueArray.append(metrics.f1_score(label_test, label_predicted))
measureArray.append("f1score")
methodArray.append("Decision Tree")
for index in range(0, 4):
measureArray.append(availableMeasures[index])
methodArray.append(availableMethods[0])
# LOGISTIC REGRESSION
# TODO: Explore which parameters could be used.
# SEE: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
logisticRegression = LogisticRegression(penalty='l2', dual=False, tol=0.0001,
C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver='liblinear',
max_iter=100, multi_class='ovr', verbose=0,
warm_start=False, n_jobs=1)
logisticRegression = LogisticRegression()
logisticRegression.fit(trainDTM, label_train)
label_predicted = logisticRegression.predict(testDTM)
valueArray.append(metrics.precision_score(label_test, label_predicted))
measureArray.append("precision")
methodArray.append("Logistic Regression")
valueArray.append(metrics.recall_score(label_test, label_predicted))
measureArray.append("recall")
methodArray.append("Logistic Regression")
valueArray.append(metrics.accuracy_score(label_test, label_predicted))
measureArray.append("accuracy")
methodArray.append("Logistic Regression")
valueArray.append(metrics.f1_score(label_test, label_predicted))
measureArray.append("f1score")
methodArray.append("Logistic Regression")
for index in range(0, 4):
measureArray.append(availableMeasures[index])
methodArray.append(availableMethods[1])
# NEURAL NETWORK
# SEE: http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
neuralNetwork = MLPClassifier(hidden_layer_sizes=(5,), activation='relu', solver='adam',
alpha=0.0001, batch_size='auto', learning_rate='constant',
learning_rate_init=0.001, power_t=0.5, max_iter=200,
shuffle=True, random_state=None, tol=0.0001,
verbose=False, warm_start=False, momentum=0.9,
nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1,
beta_1=0.9, beta_2=0.999, epsilon=1e-08)
neuralNetwork = MLPClassifier()
neuralNetwork.fit(trainDTM, label_train)
label_predicted = neuralNetwork.predict(testDTM)
valueArray.append(metrics.precision_score(label_test, label_predicted))
measureArray.append("precision")
methodArray.append("Neural Network")
valueArray.append(metrics.recall_score(label_test, label_predicted))
measureArray.append("recall")
methodArray.append("Neural Network")
valueArray.append(metrics.accuracy_score(label_test, label_predicted))
measureArray.append("accuracy")
methodArray.append("Neural Network")
valueArray.append(metrics.f1_score(label_test, label_predicted))
measureArray.append("f1score")
methodArray.append("Neural Network")
for index in range(0, 4):
measureArray.append(availableMeasures[index])
methodArray.append(availableMethods[2])
# NAIVE BAYESIAN
# SEE: http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
naiveBayesian = MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
naiveBayesian.fit(trainDTM, label_train)
label_predicted = naiveBayesian.predict(testDTM)
valueArray.append(metrics.precision_score(label_test, label_predicted))
valueArray.append(metrics.recall_score(label_test, label_predicted))
valueArray.append(metrics.accuracy_score(label_test, label_predicted))
valueArray.append(metrics.f1_score(label_test, label_predicted))
for index in range(0, 4):
measureArray.append(availableMeasures[index])
methodArray.append(availableMethods[3])
print("Step", x, "done.")
experimentOneDF = DataFrame()
experimentOneDF["measure"] = measureArray
experimentOneDF["value"] = valueArray
experimentOneDF["method"] = methodArray
experimentBasicMethodsDF = DataFrame()
experimentBasicMethodsDF["Measure"] = measureArray
experimentBasicMethodsDF["Value"] = valueArray
experimentBasicMethodsDF["Method"] = methodArray
if not os.path.exists(workspace + "results/"):
os.makedirs(workspace + "results/")
experimentOneDF.to_csv(experimentOnePath)
experimentBasicMethodsDF.to_csv(workspace + "results/experimentBasicMethods.csv")

View File

@ -5,16 +5,135 @@ import pandas
workspace = "/home/toshuumilia/Workspace/SML/" # Insert the working directory here.
datasetPath = workspace + "data/sms.tsv" # Tells where is located the data
experimentOnePath = workspace + "results/experimentOne.csv" # Location of the first experiment result
globalFigsize = (15, 6) # Graphs parameters
experimentOneDF = pandas.read_csv(experimentOnePath)
# Experiment location
# Graphs parameters
globalFigsize = (12, 6)
# Comparison Experiment #
#
# experimentOneDF = pandas.read_csv(experimentOnePath)
#
# seaborn.set_style("darkgrid")
# pyplot.figure(figsize=globalFigsize)
# seaborn.barplot(x="Value", y="Measure", hue="Method",
# data=experimentOneDF)
# pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# pyplot.ylabel('Measure', fontsize=12)
# pyplot.xlabel('Value', fontsize=12)
# pyplot.xlim(0.5, 1)
# pyplot.title('Performance comparison between four learning methods', fontsize=15)
# pyplot.show()
# Decision Tree #
# Depth Experiment
#
# experimentDTDepthDF = pandas.read_csv(workspace + "results/experimentDTDepth.csv")
#
# seaborn.set_style("whitegrid")
# pyplot.figure(figsize=globalFigsize)
# seaborn.barplot(x="Value", y="Measure", hue="Depth",
# data=experimentDTDepthDF)
# pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# pyplot.ylabel('Measure', fontsize=12)
# pyplot.xlabel('Value', fontsize=12)
# pyplot.xlim(0.5, 1)
# pyplot.title('Performance comparison of a Decision Tree relative to a maximum depth', fontsize=15)
# pyplot.show()
# Criterion Experiment
#
# experimentDTCriterionDF = pandas.read_csv(workspace + "results/experimentDTCriterion.csv")
#
# seaborn.set_style("whitegrid")
# pyplot.figure(figsize=globalFigsize)
# seaborn.barplot(x="Value", y="Measure", hue="Criterion",
# data=experimentDTCriterionDF)
# pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# pyplot.ylabel('Measure', fontsize=12)
# pyplot.xlabel('Value', fontsize=12)
# pyplot.xlim(0.5, 1)
# pyplot.title('Performance comparison of a Decision Tree relative to a splitting quality criterion', fontsize=15)
# pyplot.show()
# MinSampleSplit Experiment
#
# experimentDTMinSampleSplitDF = pandas.read_csv(workspace + "results/experimentDTMinSampleSplit.csv")
#
# seaborn.set_style("whitegrid")
# pyplot.figure(figsize=globalFigsize)
# seaborn.barplot(x="Value", y="Measure", hue="MinSampleSplit",
# data=experimentDTMinSampleSplitDF)
# pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# pyplot.ylabel('Measure', fontsize=12)
# pyplot.xlabel('Value', fontsize=12)
# pyplot.xlim(0.5, 1)
# pyplot.title('Insert Title', fontsize=15)
# pyplot.xticks(rotation='vertical')
# pyplot.show()
# MaxFeature Experiment
#
# experimentDTMaxFeatureDF = pandas.read_csv(workspace + "results/experimentDTMaxFeature.csv")
#
# seaborn.set_style("whitegrid")
# pyplot.figure(figsize=globalFigsize)
# seaborn.barplot(x="Value", y="Measure", hue="MaxFeature",
# data=experimentDTMaxFeatureDF)
# pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# pyplot.ylabel('Measure', fontsize=12)
# pyplot.xlabel('Value', fontsize=12)
# pyplot.xlim(0.5, 1)
# pyplot.title('Insert Title', fontsize=15)
# pyplot.xticks(rotation='vertical')
# pyplot.show()
# MaxLeafNodes Experiment
# experimentDTMaxLeafNodesDF = pandas.read_csv(workspace + "results/experimentDTMaxLeafNodes.csv")
#
# seaborn.set_style("whitegrid")
# pyplot.figure(figsize=globalFigsize)
# seaborn.pointplot(y="Value", hue="Measure", x="MaxLeafNodes",
# data=experimentDTMaxLeafNodesDF)
# pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# pyplot.ylabel('Measure', fontsize=12)
# pyplot.xlabel('Value', fontsize=12)
# pyplot.xlim(0.5, 1)
# pyplot.title('Insert Title', fontsize=15)
# pyplot.xticks(rotation='vertical')
# pyplot.show()
# MinImpurityDecrease Experiment
#
# experimentDTMinImpurityDecreaseDF = pandas.read_csv(workspace + "results/experimentDTMinImpurityDecrease.csv")
#
# seaborn.set_style("whitegrid")
# pyplot.figure(figsize=globalFigsize)
# seaborn.pointplot(y="Value", hue="Measure", x="MinImpurityDecrease",
# data=experimentDTMinImpurityDecreaseDF, palette="Greens_d")
# pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# pyplot.ylabel('Measure Value', fontsize=12)
# pyplot.xlabel('Min Impurity Decrease', fontsize=12)
# pyplot.title('', fontsize=15)
# pyplot.xticks(rotation='vertical')
# pyplot.show()
# BasicVsOptimized Experiment
experimentDTBasicVsOptimizedDF = pandas.read_csv(workspace + "results/experimentDTBasicVsOptimized.csv")
seaborn.set_style("whitegrid")
pyplot.figure(figsize=globalFigsize)
seaborn.barplot(x="measure", y="value", hue="method",
data=experimentOneDF, palette="Blues_d")
pyplot.ylabel('value', fontsize=12)
pyplot.xlabel('measure', fontsize=12)
seaborn.barplot(x="Value", y="Measure", hue="Tuning",
data=experimentDTBasicVsOptimizedDF)
pyplot.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
pyplot.ylabel('Measure', fontsize=12)
pyplot.xlabel('Value', fontsize=12)
pyplot.xlim(0.5, 1)
pyplot.title('Insert Title', fontsize=15)
pyplot.xticks(rotation='vertical')
pyplot.show()

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,121 @@
,Measure,Value,Method
0,Precision,0.8333333333333334,Decision Tree
1,Recall,0.8648648648648649,Decision Tree
2,Accuracy,0.95908111988514,Decision Tree
3,F1Score,0.8488063660477454,Decision Tree
4,Precision,0.9941176470588236,Logistic Regression
5,Recall,0.9135135135135135,Logistic Regression
6,Accuracy,0.9877961234745154,Logistic Regression
7,F1Score,0.9521126760563381,Logistic Regression
8,Precision,1.0,Neural Network
9,Recall,0.9297297297297298,Neural Network
10,Accuracy,0.990667623833453,Neural Network
11,F1Score,0.9635854341736695,Neural Network
12,Precision,0.8631578947368421,Decision Tree
13,Recall,0.8864864864864865,Decision Tree
14,Accuracy,0.9662598707824839,Decision Tree
15,F1Score,0.8746666666666667,Decision Tree
16,Precision,0.9941176470588236,Logistic Regression
17,Recall,0.9135135135135135,Logistic Regression
18,Accuracy,0.9877961234745154,Logistic Regression
19,F1Score,0.9521126760563381,Logistic Regression
20,Precision,1.0,Neural Network
21,Recall,0.9297297297297298,Neural Network
22,Accuracy,0.990667623833453,Neural Network
23,F1Score,0.9635854341736695,Neural Network
24,Precision,0.8465608465608465,Decision Tree
25,Recall,0.8648648648648649,Decision Tree
26,Accuracy,0.9612347451543432,Decision Tree
27,F1Score,0.8556149732620321,Decision Tree
28,Precision,0.9941176470588236,Logistic Regression
29,Recall,0.9135135135135135,Logistic Regression
30,Accuracy,0.9877961234745154,Logistic Regression
31,F1Score,0.9521126760563381,Logistic Regression
32,Precision,1.0,Neural Network
33,Recall,0.9351351351351351,Neural Network
34,Accuracy,0.9913854989231874,Neural Network
35,F1Score,0.9664804469273743,Neural Network
36,Precision,0.8743169398907104,Decision Tree
37,Recall,0.8648648648648649,Decision Tree
38,Accuracy,0.9655419956927495,Decision Tree
39,F1Score,0.8695652173913042,Decision Tree
40,Precision,0.9941176470588236,Logistic Regression
41,Recall,0.9135135135135135,Logistic Regression
42,Accuracy,0.9877961234745154,Logistic Regression
43,F1Score,0.9521126760563381,Logistic Regression
44,Precision,1.0,Neural Network
45,Recall,0.9297297297297298,Neural Network
46,Accuracy,0.990667623833453,Neural Network
47,F1Score,0.9635854341736695,Neural Network
48,Precision,0.8578947368421053,Decision Tree
49,Recall,0.8810810810810811,Decision Tree
50,Accuracy,0.964824120603015,Decision Tree
51,F1Score,0.8693333333333333,Decision Tree
52,Precision,0.9941176470588236,Logistic Regression
53,Recall,0.9135135135135135,Logistic Regression
54,Accuracy,0.9877961234745154,Logistic Regression
55,F1Score,0.9521126760563381,Logistic Regression
56,Precision,0.9942857142857143,Neural Network
57,Recall,0.9405405405405406,Neural Network
58,Accuracy,0.9913854989231874,Neural Network
59,F1Score,0.9666666666666667,Neural Network
60,Precision,0.8624338624338624,Decision Tree
61,Recall,0.8810810810810811,Decision Tree
62,Accuracy,0.9655419956927495,Decision Tree
63,F1Score,0.8716577540106951,Decision Tree
64,Precision,0.9941176470588236,Logistic Regression
65,Recall,0.9135135135135135,Logistic Regression
66,Accuracy,0.9877961234745154,Logistic Regression
67,F1Score,0.9521126760563381,Logistic Regression
68,Precision,0.9942528735632183,Neural Network
69,Recall,0.9351351351351351,Neural Network
70,Accuracy,0.990667623833453,Neural Network
71,F1Score,0.9637883008356545,Neural Network
72,Precision,0.8695652173913043,Decision Tree
73,Recall,0.8648648648648649,Decision Tree
74,Accuracy,0.964824120603015,Decision Tree
75,F1Score,0.8672086720867209,Decision Tree
76,Precision,0.9941176470588236,Logistic Regression
77,Recall,0.9135135135135135,Logistic Regression
78,Accuracy,0.9877961234745154,Logistic Regression
79,F1Score,0.9521126760563381,Logistic Regression
80,Precision,1.0,Neural Network
81,Recall,0.9297297297297298,Neural Network
82,Accuracy,0.990667623833453,Neural Network
83,F1Score,0.9635854341736695,Neural Network
84,Precision,0.8797814207650273,Decision Tree
85,Recall,0.8702702702702703,Decision Tree
86,Accuracy,0.9669777458722182,Decision Tree
87,F1Score,0.875,Decision Tree
88,Precision,0.9941176470588236,Logistic Regression
89,Recall,0.9135135135135135,Logistic Regression
90,Accuracy,0.9877961234745154,Logistic Regression
91,F1Score,0.9521126760563381,Logistic Regression
92,Precision,0.9942528735632183,Neural Network
93,Recall,0.9351351351351351,Neural Network
94,Accuracy,0.990667623833453,Neural Network
95,F1Score,0.9637883008356545,Neural Network
96,Precision,0.8601036269430051,Decision Tree
97,Recall,0.8972972972972973,Decision Tree
98,Accuracy,0.9669777458722182,Decision Tree
99,F1Score,0.8783068783068783,Decision Tree
100,Precision,0.9941176470588236,Logistic Regression
101,Recall,0.9135135135135135,Logistic Regression
102,Accuracy,0.9877961234745154,Logistic Regression
103,F1Score,0.9521126760563381,Logistic Regression
104,Precision,0.9942196531791907,Neural Network
105,Recall,0.9297297297297298,Neural Network
106,Accuracy,0.9899497487437185,Neural Network
107,F1Score,0.9608938547486033,Neural Network
108,Precision,0.8609625668449198,Decision Tree
109,Recall,0.8702702702702703,Decision Tree
110,Accuracy,0.9641062455132807,Decision Tree
111,F1Score,0.8655913978494624,Decision Tree
112,Precision,0.9941176470588236,Logistic Regression
113,Recall,0.9135135135135135,Logistic Regression
114,Accuracy,0.9877961234745154,Logistic Regression
115,F1Score,0.9521126760563381,Logistic Regression
116,Precision,1.0,Neural Network
117,Recall,0.9297297297297298,Neural Network
118,Accuracy,0.990667623833453,Neural Network
119,F1Score,0.9635854341736695,Neural Network
1 Measure Value Method
2 0 Precision 0.8333333333333334 Decision Tree
3 1 Recall 0.8648648648648649 Decision Tree
4 2 Accuracy 0.95908111988514 Decision Tree
5 3 F1Score 0.8488063660477454 Decision Tree
6 4 Precision 0.9941176470588236 Logistic Regression
7 5 Recall 0.9135135135135135 Logistic Regression
8 6 Accuracy 0.9877961234745154 Logistic Regression
9 7 F1Score 0.9521126760563381 Logistic Regression
10 8 Precision 1.0 Neural Network
11 9 Recall 0.9297297297297298 Neural Network
12 10 Accuracy 0.990667623833453 Neural Network
13 11 F1Score 0.9635854341736695 Neural Network
14 12 Precision 0.8631578947368421 Decision Tree
15 13 Recall 0.8864864864864865 Decision Tree
16 14 Accuracy 0.9662598707824839 Decision Tree
17 15 F1Score 0.8746666666666667 Decision Tree
18 16 Precision 0.9941176470588236 Logistic Regression
19 17 Recall 0.9135135135135135 Logistic Regression
20 18 Accuracy 0.9877961234745154 Logistic Regression
21 19 F1Score 0.9521126760563381 Logistic Regression
22 20 Precision 1.0 Neural Network
23 21 Recall 0.9297297297297298 Neural Network
24 22 Accuracy 0.990667623833453 Neural Network
25 23 F1Score 0.9635854341736695 Neural Network
26 24 Precision 0.8465608465608465 Decision Tree
27 25 Recall 0.8648648648648649 Decision Tree
28 26 Accuracy 0.9612347451543432 Decision Tree
29 27 F1Score 0.8556149732620321 Decision Tree
30 28 Precision 0.9941176470588236 Logistic Regression
31 29 Recall 0.9135135135135135 Logistic Regression
32 30 Accuracy 0.9877961234745154 Logistic Regression
33 31 F1Score 0.9521126760563381 Logistic Regression
34 32 Precision 1.0 Neural Network
35 33 Recall 0.9351351351351351 Neural Network
36 34 Accuracy 0.9913854989231874 Neural Network
37 35 F1Score 0.9664804469273743 Neural Network
38 36 Precision 0.8743169398907104 Decision Tree
39 37 Recall 0.8648648648648649 Decision Tree
40 38 Accuracy 0.9655419956927495 Decision Tree
41 39 F1Score 0.8695652173913042 Decision Tree
42 40 Precision 0.9941176470588236 Logistic Regression
43 41 Recall 0.9135135135135135 Logistic Regression
44 42 Accuracy 0.9877961234745154 Logistic Regression
45 43 F1Score 0.9521126760563381 Logistic Regression
46 44 Precision 1.0 Neural Network
47 45 Recall 0.9297297297297298 Neural Network
48 46 Accuracy 0.990667623833453 Neural Network
49 47 F1Score 0.9635854341736695 Neural Network
50 48 Precision 0.8578947368421053 Decision Tree
51 49 Recall 0.8810810810810811 Decision Tree
52 50 Accuracy 0.964824120603015 Decision Tree
53 51 F1Score 0.8693333333333333 Decision Tree
54 52 Precision 0.9941176470588236 Logistic Regression
55 53 Recall 0.9135135135135135 Logistic Regression
56 54 Accuracy 0.9877961234745154 Logistic Regression
57 55 F1Score 0.9521126760563381 Logistic Regression
58 56 Precision 0.9942857142857143 Neural Network
59 57 Recall 0.9405405405405406 Neural Network
60 58 Accuracy 0.9913854989231874 Neural Network
61 59 F1Score 0.9666666666666667 Neural Network
62 60 Precision 0.8624338624338624 Decision Tree
63 61 Recall 0.8810810810810811 Decision Tree
64 62 Accuracy 0.9655419956927495 Decision Tree
65 63 F1Score 0.8716577540106951 Decision Tree
66 64 Precision 0.9941176470588236 Logistic Regression
67 65 Recall 0.9135135135135135 Logistic Regression
68 66 Accuracy 0.9877961234745154 Logistic Regression
69 67 F1Score 0.9521126760563381 Logistic Regression
70 68 Precision 0.9942528735632183 Neural Network
71 69 Recall 0.9351351351351351 Neural Network
72 70 Accuracy 0.990667623833453 Neural Network
73 71 F1Score 0.9637883008356545 Neural Network
74 72 Precision 0.8695652173913043 Decision Tree
75 73 Recall 0.8648648648648649 Decision Tree
76 74 Accuracy 0.964824120603015 Decision Tree
77 75 F1Score 0.8672086720867209 Decision Tree
78 76 Precision 0.9941176470588236 Logistic Regression
79 77 Recall 0.9135135135135135 Logistic Regression
80 78 Accuracy 0.9877961234745154 Logistic Regression
81 79 F1Score 0.9521126760563381 Logistic Regression
82 80 Precision 1.0 Neural Network
83 81 Recall 0.9297297297297298 Neural Network
84 82 Accuracy 0.990667623833453 Neural Network
85 83 F1Score 0.9635854341736695 Neural Network
86 84 Precision 0.8797814207650273 Decision Tree
87 85 Recall 0.8702702702702703 Decision Tree
88 86 Accuracy 0.9669777458722182 Decision Tree
89 87 F1Score 0.875 Decision Tree
90 88 Precision 0.9941176470588236 Logistic Regression
91 89 Recall 0.9135135135135135 Logistic Regression
92 90 Accuracy 0.9877961234745154 Logistic Regression
93 91 F1Score 0.9521126760563381 Logistic Regression
94 92 Precision 0.9942528735632183 Neural Network
95 93 Recall 0.9351351351351351 Neural Network
96 94 Accuracy 0.990667623833453 Neural Network
97 95 F1Score 0.9637883008356545 Neural Network
98 96 Precision 0.8601036269430051 Decision Tree
99 97 Recall 0.8972972972972973 Decision Tree
100 98 Accuracy 0.9669777458722182 Decision Tree
101 99 F1Score 0.8783068783068783 Decision Tree
102 100 Precision 0.9941176470588236 Logistic Regression
103 101 Recall 0.9135135135135135 Logistic Regression
104 102 Accuracy 0.9877961234745154 Logistic Regression
105 103 F1Score 0.9521126760563381 Logistic Regression
106 104 Precision 0.9942196531791907 Neural Network
107 105 Recall 0.9297297297297298 Neural Network
108 106 Accuracy 0.9899497487437185 Neural Network
109 107 F1Score 0.9608938547486033 Neural Network
110 108 Precision 0.8609625668449198 Decision Tree
111 109 Recall 0.8702702702702703 Decision Tree
112 110 Accuracy 0.9641062455132807 Decision Tree
113 111 F1Score 0.8655913978494624 Decision Tree
114 112 Precision 0.9941176470588236 Logistic Regression
115 113 Recall 0.9135135135135135 Logistic Regression
116 114 Accuracy 0.9877961234745154 Logistic Regression
117 115 F1Score 0.9521126760563381 Logistic Regression
118 116 Precision 1.0 Neural Network
119 117 Recall 0.9297297297297298 Neural Network
120 118 Accuracy 0.990667623833453 Neural Network
121 119 F1Score 0.9635854341736695 Neural Network

View File

@ -0,0 +1,161 @@
,Measure,Value,Tuning
0,Precision,0.8602150537634409,Basic Decision Tree
1,Recall,0.8648648648648649,Basic Decision Tree
2,Accuracy,0.9633883704235463,Basic Decision Tree
3,F1Score,0.8625336927223719,Basic Decision Tree
4,Precision,0.9010989010989011,Custom Decision Tree
5,Recall,0.8864864864864865,Custom Decision Tree
6,Accuracy,0.9720028715003589,Custom Decision Tree
7,F1Score,0.8937329700272478,Custom Decision Tree
8,Precision,0.8563829787234043,Basic Decision Tree
9,Recall,0.8702702702702703,Basic Decision Tree
10,Accuracy,0.9633883704235463,Basic Decision Tree
11,F1Score,0.8632707774798928,Basic Decision Tree
12,Precision,0.9585798816568047,Custom Decision Tree
13,Recall,0.8756756756756757,Custom Decision Tree
14,Accuracy,0.9784637473079684,Custom Decision Tree
15,F1Score,0.9152542372881357,Custom Decision Tree
16,Precision,0.8804347826086957,Basic Decision Tree
17,Recall,0.8756756756756757,Basic Decision Tree
18,Accuracy,0.9676956209619526,Basic Decision Tree
19,F1Score,0.8780487804878049,Basic Decision Tree
20,Precision,0.9209039548022598,Custom Decision Tree
21,Recall,0.8810810810810811,Custom Decision Tree
22,Accuracy,0.9741564967695621,Custom Decision Tree
23,F1Score,0.9005524861878452,Custom Decision Tree
24,Precision,0.8412698412698413,Basic Decision Tree
25,Recall,0.8594594594594595,Basic Decision Tree
26,Accuracy,0.9597989949748744,Basic Decision Tree
27,F1Score,0.8502673796791443,Basic Decision Tree
28,Precision,0.9349112426035503,Custom Decision Tree
29,Recall,0.8540540540540541,Custom Decision Tree
30,Accuracy,0.9727207465900933,Custom Decision Tree
31,F1Score,0.8926553672316384,Custom Decision Tree
32,Precision,0.8586956521739131,Basic Decision Tree
33,Recall,0.8540540540540541,Basic Decision Tree
34,Accuracy,0.9619526202440776,Basic Decision Tree
35,F1Score,0.8563685636856369,Basic Decision Tree
36,Precision,0.9081081081081082,Custom Decision Tree
37,Recall,0.9081081081081082,Custom Decision Tree
38,Accuracy,0.9755922469490309,Custom Decision Tree
39,F1Score,0.9081081081081082,Custom Decision Tree
40,Precision,0.8534031413612565,Basic Decision Tree
41,Recall,0.8810810810810811,Basic Decision Tree
42,Accuracy,0.9641062455132807,Basic Decision Tree
43,F1Score,0.8670212765957447,Basic Decision Tree
44,Precision,0.8695652173913043,Custom Decision Tree
45,Recall,0.8648648648648649,Custom Decision Tree
46,Accuracy,0.964824120603015,Custom Decision Tree
47,F1Score,0.8672086720867209,Custom Decision Tree
48,Precision,0.8709677419354839,Basic Decision Tree
49,Recall,0.8756756756756757,Basic Decision Tree
50,Accuracy,0.9662598707824839,Basic Decision Tree
51,F1Score,0.8733153638814016,Basic Decision Tree
52,Precision,0.8950276243093923,Custom Decision Tree
53,Recall,0.8756756756756757,Custom Decision Tree
54,Accuracy,0.9698492462311558,Custom Decision Tree
55,F1Score,0.8852459016393444,Custom Decision Tree
56,Precision,0.8541666666666666,Basic Decision Tree
57,Recall,0.8864864864864865,Basic Decision Tree
58,Accuracy,0.964824120603015,Basic Decision Tree
59,F1Score,0.870026525198939,Basic Decision Tree
60,Precision,0.9239766081871345,Custom Decision Tree
61,Recall,0.8540540540540541,Custom Decision Tree
62,Accuracy,0.9712849964106246,Custom Decision Tree
63,F1Score,0.8876404494382022,Custom Decision Tree
64,Precision,0.8518518518518519,Basic Decision Tree
65,Recall,0.8702702702702703,Basic Decision Tree
66,Accuracy,0.9626704953338119,Basic Decision Tree
67,F1Score,0.8609625668449198,Basic Decision Tree
68,Precision,0.9005524861878453,Custom Decision Tree
69,Recall,0.8810810810810811,Custom Decision Tree
70,Accuracy,0.9712849964106246,Custom Decision Tree
71,F1Score,0.8907103825136612,Custom Decision Tree
72,Precision,0.8602150537634409,Basic Decision Tree
73,Recall,0.8648648648648649,Basic Decision Tree
74,Accuracy,0.9633883704235463,Basic Decision Tree
75,F1Score,0.8625336927223719,Basic Decision Tree
76,Precision,0.8852459016393442,Custom Decision Tree
77,Recall,0.8756756756756757,Custom Decision Tree
78,Accuracy,0.968413496051687,Custom Decision Tree
79,F1Score,0.8804347826086957,Custom Decision Tree
80,Precision,0.8473684210526315,Basic Decision Tree
81,Recall,0.8702702702702703,Basic Decision Tree
82,Accuracy,0.9619526202440776,Basic Decision Tree
83,F1Score,0.8586666666666666,Basic Decision Tree
84,Precision,0.873015873015873,Custom Decision Tree
85,Recall,0.8918918918918919,Custom Decision Tree
86,Accuracy,0.968413496051687,Custom Decision Tree
87,F1Score,0.8823529411764706,Custom Decision Tree
88,Precision,0.8541666666666666,Basic Decision Tree
89,Recall,0.8864864864864865,Basic Decision Tree
90,Accuracy,0.964824120603015,Basic Decision Tree
91,F1Score,0.870026525198939,Basic Decision Tree
92,Precision,0.9204545454545454,Custom Decision Tree
93,Recall,0.8756756756756757,Custom Decision Tree
94,Accuracy,0.9734386216798278,Custom Decision Tree
95,F1Score,0.8975069252077563,Custom Decision Tree
96,Precision,0.8315789473684211,Basic Decision Tree
97,Recall,0.8540540540540541,Basic Decision Tree
98,Accuracy,0.9576453697056713,Basic Decision Tree
99,F1Score,0.8426666666666667,Basic Decision Tree
100,Precision,0.873015873015873,Custom Decision Tree
101,Recall,0.8918918918918919,Custom Decision Tree
102,Accuracy,0.968413496051687,Custom Decision Tree
103,F1Score,0.8823529411764706,Custom Decision Tree
104,Precision,0.8638743455497382,Basic Decision Tree
105,Recall,0.8918918918918919,Basic Decision Tree
106,Accuracy,0.9669777458722182,Basic Decision Tree
107,F1Score,0.8776595744680851,Basic Decision Tree
108,Precision,0.9044943820224719,Custom Decision Tree
109,Recall,0.8702702702702703,Custom Decision Tree
110,Accuracy,0.9705671213208902,Custom Decision Tree
111,F1Score,0.8870523415977961,Custom Decision Tree
112,Precision,0.8617021276595744,Basic Decision Tree
113,Recall,0.8756756756756757,Basic Decision Tree
114,Accuracy,0.964824120603015,Basic Decision Tree
115,F1Score,0.8686327077747988,Basic Decision Tree
116,Precision,0.8950276243093923,Custom Decision Tree
117,Recall,0.8756756756756757,Custom Decision Tree
118,Accuracy,0.9698492462311558,Custom Decision Tree
119,F1Score,0.8852459016393444,Custom Decision Tree
120,Precision,0.8549222797927462,Basic Decision Tree
121,Recall,0.8918918918918919,Basic Decision Tree
122,Accuracy,0.9655419956927495,Basic Decision Tree
123,F1Score,0.8730158730158729,Basic Decision Tree
124,Precision,0.9005524861878453,Custom Decision Tree
125,Recall,0.8810810810810811,Custom Decision Tree
126,Accuracy,0.9712849964106246,Custom Decision Tree
127,F1Score,0.8907103825136612,Custom Decision Tree
128,Precision,0.8617021276595744,Basic Decision Tree
129,Recall,0.8756756756756757,Basic Decision Tree
130,Accuracy,0.964824120603015,Basic Decision Tree
131,F1Score,0.8686327077747988,Basic Decision Tree
132,Precision,0.8978494623655914,Custom Decision Tree
133,Recall,0.9027027027027027,Custom Decision Tree
134,Accuracy,0.9734386216798278,Custom Decision Tree
135,F1Score,0.9002695417789757,Custom Decision Tree
136,Precision,0.8497409326424871,Basic Decision Tree
137,Recall,0.8864864864864865,Basic Decision Tree
138,Accuracy,0.9641062455132807,Basic Decision Tree
139,F1Score,0.8677248677248677,Basic Decision Tree
140,Precision,0.8776595744680851,Custom Decision Tree
141,Recall,0.8918918918918919,Custom Decision Tree
142,Accuracy,0.9691313711414213,Custom Decision Tree
143,F1Score,0.8847184986595175,Custom Decision Tree
144,Precision,0.8556149732620321,Basic Decision Tree
145,Recall,0.8648648648648649,Basic Decision Tree
146,Accuracy,0.9626704953338119,Basic Decision Tree
147,F1Score,0.860215053763441,Basic Decision Tree
148,Precision,0.8350515463917526,Custom Decision Tree
149,Recall,0.8756756756756757,Custom Decision Tree
150,Accuracy,0.9605168700646087,Custom Decision Tree
151,F1Score,0.8548812664907652,Custom Decision Tree
152,Precision,0.8663101604278075,Basic Decision Tree
153,Recall,0.8756756756756757,Basic Decision Tree
154,Accuracy,0.9655419956927495,Basic Decision Tree
155,F1Score,0.8709677419354839,Basic Decision Tree
156,Precision,0.9034090909090909,Custom Decision Tree
157,Recall,0.8594594594594595,Custom Decision Tree
158,Accuracy,0.9691313711414213,Custom Decision Tree
159,F1Score,0.8808864265927977,Custom Decision Tree
1 Measure Value Tuning
2 0 Precision 0.8602150537634409 Basic Decision Tree
3 1 Recall 0.8648648648648649 Basic Decision Tree
4 2 Accuracy 0.9633883704235463 Basic Decision Tree
5 3 F1Score 0.8625336927223719 Basic Decision Tree
6 4 Precision 0.9010989010989011 Custom Decision Tree
7 5 Recall 0.8864864864864865 Custom Decision Tree
8 6 Accuracy 0.9720028715003589 Custom Decision Tree
9 7 F1Score 0.8937329700272478 Custom Decision Tree
10 8 Precision 0.8563829787234043 Basic Decision Tree
11 9 Recall 0.8702702702702703 Basic Decision Tree
12 10 Accuracy 0.9633883704235463 Basic Decision Tree
13 11 F1Score 0.8632707774798928 Basic Decision Tree
14 12 Precision 0.9585798816568047 Custom Decision Tree
15 13 Recall 0.8756756756756757 Custom Decision Tree
16 14 Accuracy 0.9784637473079684 Custom Decision Tree
17 15 F1Score 0.9152542372881357 Custom Decision Tree
18 16 Precision 0.8804347826086957 Basic Decision Tree
19 17 Recall 0.8756756756756757 Basic Decision Tree
20 18 Accuracy 0.9676956209619526 Basic Decision Tree
21 19 F1Score 0.8780487804878049 Basic Decision Tree
22 20 Precision 0.9209039548022598 Custom Decision Tree
23 21 Recall 0.8810810810810811 Custom Decision Tree
24 22 Accuracy 0.9741564967695621 Custom Decision Tree
25 23 F1Score 0.9005524861878452 Custom Decision Tree
26 24 Precision 0.8412698412698413 Basic Decision Tree
27 25 Recall 0.8594594594594595 Basic Decision Tree
28 26 Accuracy 0.9597989949748744 Basic Decision Tree
29 27 F1Score 0.8502673796791443 Basic Decision Tree
30 28 Precision 0.9349112426035503 Custom Decision Tree
31 29 Recall 0.8540540540540541 Custom Decision Tree
32 30 Accuracy 0.9727207465900933 Custom Decision Tree
33 31 F1Score 0.8926553672316384 Custom Decision Tree
34 32 Precision 0.8586956521739131 Basic Decision Tree
35 33 Recall 0.8540540540540541 Basic Decision Tree
36 34 Accuracy 0.9619526202440776 Basic Decision Tree
37 35 F1Score 0.8563685636856369 Basic Decision Tree
38 36 Precision 0.9081081081081082 Custom Decision Tree
39 37 Recall 0.9081081081081082 Custom Decision Tree
40 38 Accuracy 0.9755922469490309 Custom Decision Tree
41 39 F1Score 0.9081081081081082 Custom Decision Tree
42 40 Precision 0.8534031413612565 Basic Decision Tree
43 41 Recall 0.8810810810810811 Basic Decision Tree
44 42 Accuracy 0.9641062455132807 Basic Decision Tree
45 43 F1Score 0.8670212765957447 Basic Decision Tree
46 44 Precision 0.8695652173913043 Custom Decision Tree
47 45 Recall 0.8648648648648649 Custom Decision Tree
48 46 Accuracy 0.964824120603015 Custom Decision Tree
49 47 F1Score 0.8672086720867209 Custom Decision Tree
50 48 Precision 0.8709677419354839 Basic Decision Tree
51 49 Recall 0.8756756756756757 Basic Decision Tree
52 50 Accuracy 0.9662598707824839 Basic Decision Tree
53 51 F1Score 0.8733153638814016 Basic Decision Tree
54 52 Precision 0.8950276243093923 Custom Decision Tree
55 53 Recall 0.8756756756756757 Custom Decision Tree
56 54 Accuracy 0.9698492462311558 Custom Decision Tree
57 55 F1Score 0.8852459016393444 Custom Decision Tree
58 56 Precision 0.8541666666666666 Basic Decision Tree
59 57 Recall 0.8864864864864865 Basic Decision Tree
60 58 Accuracy 0.964824120603015 Basic Decision Tree
61 59 F1Score 0.870026525198939 Basic Decision Tree
62 60 Precision 0.9239766081871345 Custom Decision Tree
63 61 Recall 0.8540540540540541 Custom Decision Tree
64 62 Accuracy 0.9712849964106246 Custom Decision Tree
65 63 F1Score 0.8876404494382022 Custom Decision Tree
66 64 Precision 0.8518518518518519 Basic Decision Tree
67 65 Recall 0.8702702702702703 Basic Decision Tree
68 66 Accuracy 0.9626704953338119 Basic Decision Tree
69 67 F1Score 0.8609625668449198 Basic Decision Tree
70 68 Precision 0.9005524861878453 Custom Decision Tree
71 69 Recall 0.8810810810810811 Custom Decision Tree
72 70 Accuracy 0.9712849964106246 Custom Decision Tree
73 71 F1Score 0.8907103825136612 Custom Decision Tree
74 72 Precision 0.8602150537634409 Basic Decision Tree
75 73 Recall 0.8648648648648649 Basic Decision Tree
76 74 Accuracy 0.9633883704235463 Basic Decision Tree
77 75 F1Score 0.8625336927223719 Basic Decision Tree
78 76 Precision 0.8852459016393442 Custom Decision Tree
79 77 Recall 0.8756756756756757 Custom Decision Tree
80 78 Accuracy 0.968413496051687 Custom Decision Tree
81 79 F1Score 0.8804347826086957 Custom Decision Tree
82 80 Precision 0.8473684210526315 Basic Decision Tree
83 81 Recall 0.8702702702702703 Basic Decision Tree
84 82 Accuracy 0.9619526202440776 Basic Decision Tree
85 83 F1Score 0.8586666666666666 Basic Decision Tree
86 84 Precision 0.873015873015873 Custom Decision Tree
87 85 Recall 0.8918918918918919 Custom Decision Tree
88 86 Accuracy 0.968413496051687 Custom Decision Tree
89 87 F1Score 0.8823529411764706 Custom Decision Tree
90 88 Precision 0.8541666666666666 Basic Decision Tree
91 89 Recall 0.8864864864864865 Basic Decision Tree
92 90 Accuracy 0.964824120603015 Basic Decision Tree
93 91 F1Score 0.870026525198939 Basic Decision Tree
94 92 Precision 0.9204545454545454 Custom Decision Tree
95 93 Recall 0.8756756756756757 Custom Decision Tree
96 94 Accuracy 0.9734386216798278 Custom Decision Tree
97 95 F1Score 0.8975069252077563 Custom Decision Tree
98 96 Precision 0.8315789473684211 Basic Decision Tree
99 97 Recall 0.8540540540540541 Basic Decision Tree
100 98 Accuracy 0.9576453697056713 Basic Decision Tree
101 99 F1Score 0.8426666666666667 Basic Decision Tree
102 100 Precision 0.873015873015873 Custom Decision Tree
103 101 Recall 0.8918918918918919 Custom Decision Tree
104 102 Accuracy 0.968413496051687 Custom Decision Tree
105 103 F1Score 0.8823529411764706 Custom Decision Tree
106 104 Precision 0.8638743455497382 Basic Decision Tree
107 105 Recall 0.8918918918918919 Basic Decision Tree
108 106 Accuracy 0.9669777458722182 Basic Decision Tree
109 107 F1Score 0.8776595744680851 Basic Decision Tree
110 108 Precision 0.9044943820224719 Custom Decision Tree
111 109 Recall 0.8702702702702703 Custom Decision Tree
112 110 Accuracy 0.9705671213208902 Custom Decision Tree
113 111 F1Score 0.8870523415977961 Custom Decision Tree
114 112 Precision 0.8617021276595744 Basic Decision Tree
115 113 Recall 0.8756756756756757 Basic Decision Tree
116 114 Accuracy 0.964824120603015 Basic Decision Tree
117 115 F1Score 0.8686327077747988 Basic Decision Tree
118 116 Precision 0.8950276243093923 Custom Decision Tree
119 117 Recall 0.8756756756756757 Custom Decision Tree
120 118 Accuracy 0.9698492462311558 Custom Decision Tree
121 119 F1Score 0.8852459016393444 Custom Decision Tree
122 120 Precision 0.8549222797927462 Basic Decision Tree
123 121 Recall 0.8918918918918919 Basic Decision Tree
124 122 Accuracy 0.9655419956927495 Basic Decision Tree
125 123 F1Score 0.8730158730158729 Basic Decision Tree
126 124 Precision 0.9005524861878453 Custom Decision Tree
127 125 Recall 0.8810810810810811 Custom Decision Tree
128 126 Accuracy 0.9712849964106246 Custom Decision Tree
129 127 F1Score 0.8907103825136612 Custom Decision Tree
130 128 Precision 0.8617021276595744 Basic Decision Tree
131 129 Recall 0.8756756756756757 Basic Decision Tree
132 130 Accuracy 0.964824120603015 Basic Decision Tree
133 131 F1Score 0.8686327077747988 Basic Decision Tree
134 132 Precision 0.8978494623655914 Custom Decision Tree
135 133 Recall 0.9027027027027027 Custom Decision Tree
136 134 Accuracy 0.9734386216798278 Custom Decision Tree
137 135 F1Score 0.9002695417789757 Custom Decision Tree
138 136 Precision 0.8497409326424871 Basic Decision Tree
139 137 Recall 0.8864864864864865 Basic Decision Tree
140 138 Accuracy 0.9641062455132807 Basic Decision Tree
141 139 F1Score 0.8677248677248677 Basic Decision Tree
142 140 Precision 0.8776595744680851 Custom Decision Tree
143 141 Recall 0.8918918918918919 Custom Decision Tree
144 142 Accuracy 0.9691313711414213 Custom Decision Tree
145 143 F1Score 0.8847184986595175 Custom Decision Tree
146 144 Precision 0.8556149732620321 Basic Decision Tree
147 145 Recall 0.8648648648648649 Basic Decision Tree
148 146 Accuracy 0.9626704953338119 Basic Decision Tree
149 147 F1Score 0.860215053763441 Basic Decision Tree
150 148 Precision 0.8350515463917526 Custom Decision Tree
151 149 Recall 0.8756756756756757 Custom Decision Tree
152 150 Accuracy 0.9605168700646087 Custom Decision Tree
153 151 F1Score 0.8548812664907652 Custom Decision Tree
154 152 Precision 0.8663101604278075 Basic Decision Tree
155 153 Recall 0.8756756756756757 Basic Decision Tree
156 154 Accuracy 0.9655419956927495 Basic Decision Tree
157 155 F1Score 0.8709677419354839 Basic Decision Tree
158 156 Precision 0.9034090909090909 Custom Decision Tree
159 157 Recall 0.8594594594594595 Custom Decision Tree
160 158 Accuracy 0.9691313711414213 Custom Decision Tree
161 159 F1Score 0.8808864265927977 Custom Decision Tree

View File

@ -0,0 +1,17 @@
,Measure,Value,Criterion
0,Accuracy,0.9619526202440776,Criterion-gini
1,F1Score,0.8579088471849866,Criterion-gini
2,Accuracy,0.9698492462311558,Criterion-entropy
3,F1Score,0.8870967741935484,Criterion-entropy
4,Accuracy,0.9655419956927495,Criterion-gini
5,F1Score,0.8709677419354839,Criterion-gini
6,Accuracy,0.9691313711414213,Criterion-entropy
7,F1Score,0.8853333333333333,Criterion-entropy
8,Accuracy,0.9641062455132807,Criterion-gini
9,F1Score,0.8655913978494624,Criterion-gini
10,Accuracy,0.968413496051687,Criterion-entropy
11,F1Score,0.8810810810810811,Criterion-entropy
12,Accuracy,0.9698492462311558,Criterion-gini
13,F1Score,0.8864864864864865,Criterion-gini
14,Accuracy,0.9691313711414213,Criterion-entropy
15,F1Score,0.8847184986595175,Criterion-entropy
1 Measure Value Criterion
2 0 Accuracy 0.9619526202440776 Criterion-gini
3 1 F1Score 0.8579088471849866 Criterion-gini
4 2 Accuracy 0.9698492462311558 Criterion-entropy
5 3 F1Score 0.8870967741935484 Criterion-entropy
6 4 Accuracy 0.9655419956927495 Criterion-gini
7 5 F1Score 0.8709677419354839 Criterion-gini
8 6 Accuracy 0.9691313711414213 Criterion-entropy
9 7 F1Score 0.8853333333333333 Criterion-entropy
10 8 Accuracy 0.9641062455132807 Criterion-gini
11 9 F1Score 0.8655913978494624 Criterion-gini
12 10 Accuracy 0.968413496051687 Criterion-entropy
13 11 F1Score 0.8810810810810811 Criterion-entropy
14 12 Accuracy 0.9698492462311558 Criterion-gini
15 13 F1Score 0.8864864864864865 Criterion-gini
16 14 Accuracy 0.9691313711414213 Criterion-entropy
17 15 F1Score 0.8847184986595175 Criterion-entropy

View File

@ -0,0 +1,49 @@
,Measure,Value,Depth
0,Accuracy,0.9612347451543432,Depth-None
1,F1Score,0.8586387434554974,Depth-None
2,Accuracy,0.9633883704235463,Depth-50
3,F1Score,0.8632707774798928,Depth-50
4,Accuracy,0.9597989949748744,Depth-25
5,F1Score,0.8478260869565218,Depth-25
6,Accuracy,0.9612347451543432,Depth-10
7,F1Score,0.8524590163934427,Depth-10
8,Accuracy,0.9361091170136396,Depth-5
9,F1Score,0.7613941018766757,Depth-5
10,Accuracy,0.9411342426417804,Depth-3
11,F1Score,0.7630057803468209,Depth-3
12,Accuracy,0.9662598707824839,Depth-None
13,F1Score,0.8733153638814016,Depth-None
14,Accuracy,0.9676956209619526,Depth-50
15,F1Score,0.8780487804878049,Depth-50
16,Accuracy,0.9655419956927495,Depth-25
17,F1Score,0.8695652173913042,Depth-25
18,Accuracy,0.9612347451543432,Depth-10
19,F1Score,0.8524590163934427,Depth-10
20,Accuracy,0.9361091170136396,Depth-5
21,F1Score,0.7613941018766757,Depth-5
22,Accuracy,0.9411342426417804,Depth-3
23,F1Score,0.7630057803468209,Depth-3
24,Accuracy,0.9633883704235463,Depth-None
25,F1Score,0.8640000000000001,Depth-None
26,Accuracy,0.9641062455132807,Depth-50
27,F1Score,0.8648648648648649,Depth-50
28,Accuracy,0.9662598707824839,Depth-25
29,F1Score,0.8719346049046321,Depth-25
30,Accuracy,0.9641062455132807,Depth-10
31,F1Score,0.861878453038674,Depth-10
32,Accuracy,0.9353912419239052,Depth-5
33,F1Score,0.7593582887700535,Depth-5
34,Accuracy,0.9404163675520459,Depth-3
35,F1Score,0.7608069164265131,Depth-3
36,Accuracy,0.968413496051687,Depth-None
37,F1Score,0.8823529411764706,Depth-None
38,Accuracy,0.9641062455132807,Depth-50
39,F1Score,0.8655913978494624,Depth-50
40,Accuracy,0.9633883704235463,Depth-25
41,F1Score,0.8587257617728532,Depth-25
42,Accuracy,0.9605168700646087,Depth-10
43,F1Score,0.8501362397820164,Depth-10
44,Accuracy,0.9346733668341709,Depth-5
45,F1Score,0.7547169811320754,Depth-5
46,Accuracy,0.9411342426417804,Depth-3
47,F1Score,0.7630057803468209,Depth-3
1 Measure Value Depth
2 0 Accuracy 0.9612347451543432 Depth-None
3 1 F1Score 0.8586387434554974 Depth-None
4 2 Accuracy 0.9633883704235463 Depth-50
5 3 F1Score 0.8632707774798928 Depth-50
6 4 Accuracy 0.9597989949748744 Depth-25
7 5 F1Score 0.8478260869565218 Depth-25
8 6 Accuracy 0.9612347451543432 Depth-10
9 7 F1Score 0.8524590163934427 Depth-10
10 8 Accuracy 0.9361091170136396 Depth-5
11 9 F1Score 0.7613941018766757 Depth-5
12 10 Accuracy 0.9411342426417804 Depth-3
13 11 F1Score 0.7630057803468209 Depth-3
14 12 Accuracy 0.9662598707824839 Depth-None
15 13 F1Score 0.8733153638814016 Depth-None
16 14 Accuracy 0.9676956209619526 Depth-50
17 15 F1Score 0.8780487804878049 Depth-50
18 16 Accuracy 0.9655419956927495 Depth-25
19 17 F1Score 0.8695652173913042 Depth-25
20 18 Accuracy 0.9612347451543432 Depth-10
21 19 F1Score 0.8524590163934427 Depth-10
22 20 Accuracy 0.9361091170136396 Depth-5
23 21 F1Score 0.7613941018766757 Depth-5
24 22 Accuracy 0.9411342426417804 Depth-3
25 23 F1Score 0.7630057803468209 Depth-3
26 24 Accuracy 0.9633883704235463 Depth-None
27 25 F1Score 0.8640000000000001 Depth-None
28 26 Accuracy 0.9641062455132807 Depth-50
29 27 F1Score 0.8648648648648649 Depth-50
30 28 Accuracy 0.9662598707824839 Depth-25
31 29 F1Score 0.8719346049046321 Depth-25
32 30 Accuracy 0.9641062455132807 Depth-10
33 31 F1Score 0.861878453038674 Depth-10
34 32 Accuracy 0.9353912419239052 Depth-5
35 33 F1Score 0.7593582887700535 Depth-5
36 34 Accuracy 0.9404163675520459 Depth-3
37 35 F1Score 0.7608069164265131 Depth-3
38 36 Accuracy 0.968413496051687 Depth-None
39 37 F1Score 0.8823529411764706 Depth-None
40 38 Accuracy 0.9641062455132807 Depth-50
41 39 F1Score 0.8655913978494624 Depth-50
42 40 Accuracy 0.9633883704235463 Depth-25
43 41 F1Score 0.8587257617728532 Depth-25
44 42 Accuracy 0.9605168700646087 Depth-10
45 43 F1Score 0.8501362397820164 Depth-10
46 44 Accuracy 0.9346733668341709 Depth-5
47 45 F1Score 0.7547169811320754 Depth-5
48 46 Accuracy 0.9411342426417804 Depth-3
49 47 F1Score 0.7630057803468209 Depth-3

View File

@ -0,0 +1,121 @@
,Measure,Value,MaxFeature
0,Accuracy,0.9612347451543432,MaxFeature-None
1,F1Score,0.8571428571428572,MaxFeature-None
2,Accuracy,0.9540559942569993,MaxFeature-sqrt
3,F1Score,0.815028901734104,MaxFeature-sqrt
4,Accuracy,0.9526202440775305,MaxFeature-log2
5,F1Score,0.8092485549132947,MaxFeature-log2
6,Accuracy,0.9741564967695621,MaxFeature-0.25
7,F1Score,0.9027027027027028,MaxFeature-0.25
8,Accuracy,0.9691313711414213,MaxFeature-0.5
9,F1Score,0.8840970350404314,MaxFeature-0.5
10,Accuracy,0.9734386216798278,MaxFeature-0.75
11,F1Score,0.899728997289973,MaxFeature-0.75
12,Accuracy,0.964824120603015,MaxFeature-None
13,F1Score,0.8672086720867209,MaxFeature-None
14,Accuracy,0.9576453697056713,MaxFeature-sqrt
15,F1Score,0.8374655647382921,MaxFeature-sqrt
16,Accuracy,0.9526202440775305,MaxFeature-log2
17,F1Score,0.8081395348837209,MaxFeature-log2
18,Accuracy,0.9734386216798278,MaxFeature-0.25
19,F1Score,0.9008042895442359,MaxFeature-0.25
20,Accuracy,0.9727207465900933,MaxFeature-0.5
21,F1Score,0.8961748633879781,MaxFeature-0.5
22,Accuracy,0.9669777458722182,MaxFeature-0.75
23,F1Score,0.875,MaxFeature-0.75
24,Accuracy,0.9619526202440776,MaxFeature-None
25,F1Score,0.8571428571428572,MaxFeature-None
26,Accuracy,0.9748743718592965,MaxFeature-sqrt
27,F1Score,0.9046321525885558,MaxFeature-sqrt
28,Accuracy,0.9511844938980617,MaxFeature-log2
29,F1Score,0.8045977011494253,MaxFeature-log2
30,Accuracy,0.9691313711414213,MaxFeature-0.25
31,F1Score,0.8847184986595175,MaxFeature-0.25
32,Accuracy,0.9705671213208902,MaxFeature-0.5
33,F1Score,0.8906666666666666,MaxFeature-0.5
34,Accuracy,0.9662598707824839,MaxFeature-0.75
35,F1Score,0.872628726287263,MaxFeature-0.75
36,Accuracy,0.9662598707824839,MaxFeature-None
37,F1Score,0.873994638069705,MaxFeature-None
38,Accuracy,0.95908111988514,MaxFeature-sqrt
39,F1Score,0.8438356164383561,MaxFeature-sqrt
40,Accuracy,0.9490308686288585,MaxFeature-log2
41,F1Score,0.8011204481792717,MaxFeature-log2
42,Accuracy,0.9755922469490309,MaxFeature-0.25
43,F1Score,0.9050279329608939,MaxFeature-0.25
44,Accuracy,0.9712849964106246,MaxFeature-0.5
45,F1Score,0.8901098901098903,MaxFeature-0.5
46,Accuracy,0.9705671213208902,MaxFeature-0.75
47,F1Score,0.888888888888889,MaxFeature-0.75
48,Accuracy,0.9619526202440776,MaxFeature-None
49,F1Score,0.8579088471849866,MaxFeature-None
50,Accuracy,0.9576453697056713,MaxFeature-sqrt
51,F1Score,0.8319088319088319,MaxFeature-sqrt
52,Accuracy,0.9432878679109835,MaxFeature-log2
53,F1Score,0.774928774928775,MaxFeature-log2
54,Accuracy,0.9619526202440776,MaxFeature-0.25
55,F1Score,0.8594164456233423,MaxFeature-0.25
56,Accuracy,0.9626704953338119,MaxFeature-0.5
57,F1Score,0.8624338624338624,MaxFeature-0.5
58,Accuracy,0.9641062455132807,MaxFeature-0.75
59,F1Score,0.8641304347826086,MaxFeature-0.75
60,Accuracy,0.9612347451543432,MaxFeature-None
61,F1Score,0.8571428571428572,MaxFeature-None
62,Accuracy,0.9547738693467337,MaxFeature-sqrt
63,F1Score,0.8205128205128205,MaxFeature-sqrt
64,Accuracy,0.9511844938980617,MaxFeature-log2
65,F1Score,0.8121546961325967,MaxFeature-log2
66,Accuracy,0.9755922469490309,MaxFeature-0.25
67,F1Score,0.9065934065934066,MaxFeature-0.25
68,Accuracy,0.9705671213208902,MaxFeature-0.5
69,F1Score,0.8894878706199462,MaxFeature-0.5
70,Accuracy,0.968413496051687,MaxFeature-0.75
71,F1Score,0.8848167539267016,MaxFeature-0.75
72,Accuracy,0.9633883704235463,MaxFeature-None
73,F1Score,0.8625336927223719,MaxFeature-None
74,Accuracy,0.9626704953338119,MaxFeature-sqrt
75,F1Score,0.8539325842696629,MaxFeature-sqrt
76,Accuracy,0.9425699928212491,MaxFeature-log2
77,F1Score,0.7660818713450294,MaxFeature-log2
78,Accuracy,0.9705671213208902,MaxFeature-0.25
79,F1Score,0.8894878706199462,MaxFeature-0.25
80,Accuracy,0.9770279971284996,MaxFeature-0.5
81,F1Score,0.9148936170212766,MaxFeature-0.5
82,Accuracy,0.9633883704235463,MaxFeature-0.75
83,F1Score,0.8640000000000001,MaxFeature-0.75
84,Accuracy,0.9662598707824839,MaxFeature-None
85,F1Score,0.8733153638814016,MaxFeature-None
86,Accuracy,0.95908111988514,MaxFeature-sqrt
87,F1Score,0.841225626740947,MaxFeature-sqrt
88,Accuracy,0.9440057430007178,MaxFeature-log2
89,F1Score,0.7758620689655172,MaxFeature-log2
90,Accuracy,0.9763101220387652,MaxFeature-0.25
91,F1Score,0.9095890410958904,MaxFeature-0.25
92,Accuracy,0.9712849964106246,MaxFeature-0.5
93,F1Score,0.8895027624309393,MaxFeature-0.5
94,Accuracy,0.9626704953338119,MaxFeature-0.75
95,F1Score,0.8594594594594595,MaxFeature-0.75
96,Accuracy,0.9619526202440776,MaxFeature-None
97,F1Score,0.8579088471849866,MaxFeature-None
98,Accuracy,0.9626704953338119,MaxFeature-sqrt
99,F1Score,0.8452380952380952,MaxFeature-sqrt
100,Accuracy,0.9547738693467337,MaxFeature-log2
101,F1Score,0.8130563798219584,MaxFeature-log2
102,Accuracy,0.9705671213208902,MaxFeature-0.25
103,F1Score,0.8876712328767123,MaxFeature-0.25
104,Accuracy,0.9777458722182341,MaxFeature-0.5
105,F1Score,0.9155313351498637,MaxFeature-0.5
106,Accuracy,0.9655419956927495,MaxFeature-0.75
107,F1Score,0.8702702702702703,MaxFeature-0.75
108,Accuracy,0.9655419956927495,MaxFeature-None
109,F1Score,0.8702702702702703,MaxFeature-None
110,Accuracy,0.9490308686288585,MaxFeature-sqrt
111,F1Score,0.8116710875331564,MaxFeature-sqrt
112,Accuracy,0.9526202440775305,MaxFeature-log2
113,F1Score,0.8070175438596491,MaxFeature-log2
114,Accuracy,0.9669777458722182,MaxFeature-0.25
115,F1Score,0.8776595744680851,MaxFeature-0.25
116,Accuracy,0.9734386216798278,MaxFeature-0.5
117,F1Score,0.8969359331476323,MaxFeature-0.5
118,Accuracy,0.9748743718592965,MaxFeature-0.75
119,F1Score,0.9030470914127423,MaxFeature-0.75
1 Measure Value MaxFeature
2 0 Accuracy 0.9612347451543432 MaxFeature-None
3 1 F1Score 0.8571428571428572 MaxFeature-None
4 2 Accuracy 0.9540559942569993 MaxFeature-sqrt
5 3 F1Score 0.815028901734104 MaxFeature-sqrt
6 4 Accuracy 0.9526202440775305 MaxFeature-log2
7 5 F1Score 0.8092485549132947 MaxFeature-log2
8 6 Accuracy 0.9741564967695621 MaxFeature-0.25
9 7 F1Score 0.9027027027027028 MaxFeature-0.25
10 8 Accuracy 0.9691313711414213 MaxFeature-0.5
11 9 F1Score 0.8840970350404314 MaxFeature-0.5
12 10 Accuracy 0.9734386216798278 MaxFeature-0.75
13 11 F1Score 0.899728997289973 MaxFeature-0.75
14 12 Accuracy 0.964824120603015 MaxFeature-None
15 13 F1Score 0.8672086720867209 MaxFeature-None
16 14 Accuracy 0.9576453697056713 MaxFeature-sqrt
17 15 F1Score 0.8374655647382921 MaxFeature-sqrt
18 16 Accuracy 0.9526202440775305 MaxFeature-log2
19 17 F1Score 0.8081395348837209 MaxFeature-log2
20 18 Accuracy 0.9734386216798278 MaxFeature-0.25
21 19 F1Score 0.9008042895442359 MaxFeature-0.25
22 20 Accuracy 0.9727207465900933 MaxFeature-0.5
23 21 F1Score 0.8961748633879781 MaxFeature-0.5
24 22 Accuracy 0.9669777458722182 MaxFeature-0.75
25 23 F1Score 0.875 MaxFeature-0.75
26 24 Accuracy 0.9619526202440776 MaxFeature-None
27 25 F1Score 0.8571428571428572 MaxFeature-None
28 26 Accuracy 0.9748743718592965 MaxFeature-sqrt
29 27 F1Score 0.9046321525885558 MaxFeature-sqrt
30 28 Accuracy 0.9511844938980617 MaxFeature-log2
31 29 F1Score 0.8045977011494253 MaxFeature-log2
32 30 Accuracy 0.9691313711414213 MaxFeature-0.25
33 31 F1Score 0.8847184986595175 MaxFeature-0.25
34 32 Accuracy 0.9705671213208902 MaxFeature-0.5
35 33 F1Score 0.8906666666666666 MaxFeature-0.5
36 34 Accuracy 0.9662598707824839 MaxFeature-0.75
37 35 F1Score 0.872628726287263 MaxFeature-0.75
38 36 Accuracy 0.9662598707824839 MaxFeature-None
39 37 F1Score 0.873994638069705 MaxFeature-None
40 38 Accuracy 0.95908111988514 MaxFeature-sqrt
41 39 F1Score 0.8438356164383561 MaxFeature-sqrt
42 40 Accuracy 0.9490308686288585 MaxFeature-log2
43 41 F1Score 0.8011204481792717 MaxFeature-log2
44 42 Accuracy 0.9755922469490309 MaxFeature-0.25
45 43 F1Score 0.9050279329608939 MaxFeature-0.25
46 44 Accuracy 0.9712849964106246 MaxFeature-0.5
47 45 F1Score 0.8901098901098903 MaxFeature-0.5
48 46 Accuracy 0.9705671213208902 MaxFeature-0.75
49 47 F1Score 0.888888888888889 MaxFeature-0.75
50 48 Accuracy 0.9619526202440776 MaxFeature-None
51 49 F1Score 0.8579088471849866 MaxFeature-None
52 50 Accuracy 0.9576453697056713 MaxFeature-sqrt
53 51 F1Score 0.8319088319088319 MaxFeature-sqrt
54 52 Accuracy 0.9432878679109835 MaxFeature-log2
55 53 F1Score 0.774928774928775 MaxFeature-log2
56 54 Accuracy 0.9619526202440776 MaxFeature-0.25
57 55 F1Score 0.8594164456233423 MaxFeature-0.25
58 56 Accuracy 0.9626704953338119 MaxFeature-0.5
59 57 F1Score 0.8624338624338624 MaxFeature-0.5
60 58 Accuracy 0.9641062455132807 MaxFeature-0.75
61 59 F1Score 0.8641304347826086 MaxFeature-0.75
62 60 Accuracy 0.9612347451543432 MaxFeature-None
63 61 F1Score 0.8571428571428572 MaxFeature-None
64 62 Accuracy 0.9547738693467337 MaxFeature-sqrt
65 63 F1Score 0.8205128205128205 MaxFeature-sqrt
66 64 Accuracy 0.9511844938980617 MaxFeature-log2
67 65 F1Score 0.8121546961325967 MaxFeature-log2
68 66 Accuracy 0.9755922469490309 MaxFeature-0.25
69 67 F1Score 0.9065934065934066 MaxFeature-0.25
70 68 Accuracy 0.9705671213208902 MaxFeature-0.5
71 69 F1Score 0.8894878706199462 MaxFeature-0.5
72 70 Accuracy 0.968413496051687 MaxFeature-0.75
73 71 F1Score 0.8848167539267016 MaxFeature-0.75
74 72 Accuracy 0.9633883704235463 MaxFeature-None
75 73 F1Score 0.8625336927223719 MaxFeature-None
76 74 Accuracy 0.9626704953338119 MaxFeature-sqrt
77 75 F1Score 0.8539325842696629 MaxFeature-sqrt
78 76 Accuracy 0.9425699928212491 MaxFeature-log2
79 77 F1Score 0.7660818713450294 MaxFeature-log2
80 78 Accuracy 0.9705671213208902 MaxFeature-0.25
81 79 F1Score 0.8894878706199462 MaxFeature-0.25
82 80 Accuracy 0.9770279971284996 MaxFeature-0.5
83 81 F1Score 0.9148936170212766 MaxFeature-0.5
84 82 Accuracy 0.9633883704235463 MaxFeature-0.75
85 83 F1Score 0.8640000000000001 MaxFeature-0.75
86 84 Accuracy 0.9662598707824839 MaxFeature-None
87 85 F1Score 0.8733153638814016 MaxFeature-None
88 86 Accuracy 0.95908111988514 MaxFeature-sqrt
89 87 F1Score 0.841225626740947 MaxFeature-sqrt
90 88 Accuracy 0.9440057430007178 MaxFeature-log2
91 89 F1Score 0.7758620689655172 MaxFeature-log2
92 90 Accuracy 0.9763101220387652 MaxFeature-0.25
93 91 F1Score 0.9095890410958904 MaxFeature-0.25
94 92 Accuracy 0.9712849964106246 MaxFeature-0.5
95 93 F1Score 0.8895027624309393 MaxFeature-0.5
96 94 Accuracy 0.9626704953338119 MaxFeature-0.75
97 95 F1Score 0.8594594594594595 MaxFeature-0.75
98 96 Accuracy 0.9619526202440776 MaxFeature-None
99 97 F1Score 0.8579088471849866 MaxFeature-None
100 98 Accuracy 0.9626704953338119 MaxFeature-sqrt
101 99 F1Score 0.8452380952380952 MaxFeature-sqrt
102 100 Accuracy 0.9547738693467337 MaxFeature-log2
103 101 F1Score 0.8130563798219584 MaxFeature-log2
104 102 Accuracy 0.9705671213208902 MaxFeature-0.25
105 103 F1Score 0.8876712328767123 MaxFeature-0.25
106 104 Accuracy 0.9777458722182341 MaxFeature-0.5
107 105 F1Score 0.9155313351498637 MaxFeature-0.5
108 106 Accuracy 0.9655419956927495 MaxFeature-0.75
109 107 F1Score 0.8702702702702703 MaxFeature-0.75
110 108 Accuracy 0.9655419956927495 MaxFeature-None
111 109 F1Score 0.8702702702702703 MaxFeature-None
112 110 Accuracy 0.9490308686288585 MaxFeature-sqrt
113 111 F1Score 0.8116710875331564 MaxFeature-sqrt
114 112 Accuracy 0.9526202440775305 MaxFeature-log2
115 113 F1Score 0.8070175438596491 MaxFeature-log2
116 114 Accuracy 0.9669777458722182 MaxFeature-0.25
117 115 F1Score 0.8776595744680851 MaxFeature-0.25
118 116 Accuracy 0.9734386216798278 MaxFeature-0.5
119 117 F1Score 0.8969359331476323 MaxFeature-0.5
120 118 Accuracy 0.9748743718592965 MaxFeature-0.75
121 119 F1Score 0.9030470914127423 MaxFeature-0.75

View File

@ -0,0 +1,271 @@
,Measure,Value,MaxLeafNodes
0,Accuracy,0.8786791098348887,2
1,F1Score,0.48318042813455664,2
2,Accuracy,0.9404163675520459,10
3,F1Score,0.7844155844155843,10
4,Accuracy,0.95908111988514,20
5,F1Score,0.841225626740947,20
6,Accuracy,0.9626704953338119,30
7,F1Score,0.8547486033519553,30
8,Accuracy,0.968413496051687,40
9,F1Score,0.8784530386740332,40
10,Accuracy,0.9669777458722182,50
11,F1Score,0.87292817679558,50
12,Accuracy,0.9626704953338119,60
13,F1Score,0.8609625668449198,60
14,Accuracy,0.9655419956927495,70
15,F1Score,0.8688524590163934,70
16,Accuracy,0.964824120603015,80
17,F1Score,0.8672086720867209,80
18,Accuracy,0.9626704953338119,90
19,F1Score,0.8631578947368422,90
20,Accuracy,0.9641062455132807,100
21,F1Score,0.8648648648648649,100
22,Accuracy,0.9612347451543432,110
23,F1Score,0.8556149732620321,110
24,Accuracy,0.9641062455132807,120
25,F1Score,0.8670212765957447,120
26,Accuracy,0.9655419956927495,130
27,F1Score,0.8723404255319149,130
28,Accuracy,0.9655419956927495,140
29,F1Score,0.8702702702702703,140
30,Accuracy,0.9633883704235463,150
31,F1Score,0.8647214854111406,150
32,Accuracy,0.9605168700646087,160
33,F1Score,0.8517520215633423,160
34,Accuracy,0.9612347451543432,170
35,F1Score,0.8571428571428572,170
36,Accuracy,0.9641062455132807,180
37,F1Score,0.8648648648648649,180
38,Accuracy,0.9576453697056713,190
39,F1Score,0.8426666666666667,190
40,Accuracy,0.9662598707824839,200
41,F1Score,0.872628726287263,200
42,Accuracy,0.9612347451543432,210
43,F1Score,0.8578947368421053,210
44,Accuracy,0.9669777458722182,220
45,F1Score,0.8763440860215054,220
46,Accuracy,0.9619526202440776,230
47,F1Score,0.8601583113456465,230
48,Accuracy,0.9669777458722182,240
49,F1Score,0.8756756756756757,240
50,Accuracy,0.964824120603015,250
51,F1Score,0.8679245283018868,250
52,Accuracy,0.9641062455132807,260
53,F1Score,0.8670212765957447,260
54,Accuracy,0.8786791098348887,2
55,F1Score,0.48318042813455664,2
56,Accuracy,0.9382627422828428,10
57,F1Score,0.7783505154639175,10
58,Accuracy,0.95908111988514,20
59,F1Score,0.8463611859838276,20
60,Accuracy,0.9633883704235463,30
61,F1Score,0.8571428571428571,30
62,Accuracy,0.9698492462311558,40
63,F1Score,0.8820224719101123,40
64,Accuracy,0.968413496051687,50
65,F1Score,0.8791208791208792,50
66,Accuracy,0.9626704953338119,60
67,F1Score,0.8586956521739131,60
68,Accuracy,0.964824120603015,70
69,F1Score,0.8693333333333333,70
70,Accuracy,0.964824120603015,80
71,F1Score,0.8679245283018868,80
72,Accuracy,0.9655419956927495,90
73,F1Score,0.8702702702702703,90
74,Accuracy,0.9612347451543432,100
75,F1Score,0.8556149732620321,100
76,Accuracy,0.9612347451543432,110
77,F1Score,0.8532608695652173,110
78,Accuracy,0.9612347451543432,120
79,F1Score,0.8586387434554974,120
80,Accuracy,0.9676956209619526,130
81,F1Score,0.88,130
82,Accuracy,0.9655419956927495,140
83,F1Score,0.8709677419354839,140
84,Accuracy,0.9626704953338119,150
85,F1Score,0.8624338624338624,150
86,Accuracy,0.968413496051687,160
87,F1Score,0.8810810810810811,160
88,Accuracy,0.9641062455132807,170
89,F1Score,0.8655913978494624,170
90,Accuracy,0.9641062455132807,180
91,F1Score,0.868421052631579,180
92,Accuracy,0.9597989949748744,190
93,F1Score,0.8526315789473685,190
94,Accuracy,0.9605168700646087,200
95,F1Score,0.8533333333333334,200
96,Accuracy,0.9676956209619526,210
97,F1Score,0.8787061994609164,210
98,Accuracy,0.9619526202440776,220
99,F1Score,0.8579088471849866,220
100,Accuracy,0.9641062455132807,230
101,F1Score,0.8663101604278075,230
102,Accuracy,0.964824120603015,240
103,F1Score,0.8664850136239781,240
104,Accuracy,0.9641062455132807,250
105,F1Score,0.8677248677248677,250
106,Accuracy,0.9662598707824839,260
107,F1Score,0.873994638069705,260
108,Accuracy,0.8786791098348887,2
109,F1Score,0.48318042813455664,2
110,Accuracy,0.9382627422828428,10
111,F1Score,0.7783505154639175,10
112,Accuracy,0.9597989949748744,20
113,F1Score,0.849462365591398,20
114,Accuracy,0.964824120603015,30
115,F1Score,0.8635097493036211,30
116,Accuracy,0.9662598707824839,40
117,F1Score,0.8705234159779616,40
118,Accuracy,0.9691313711414213,50
119,F1Score,0.8802228412256268,50
120,Accuracy,0.9655419956927495,60
121,F1Score,0.8709677419354839,60
122,Accuracy,0.9633883704235463,70
123,F1Score,0.8647214854111406,70
124,Accuracy,0.9569274946159368,80
125,F1Score,0.8412698412698413,80
126,Accuracy,0.9633883704235463,90
127,F1Score,0.8640000000000001,90
128,Accuracy,0.9619526202440776,100
129,F1Score,0.8601583113456465,100
130,Accuracy,0.9576453697056713,110
131,F1Score,0.8426666666666667,110
132,Accuracy,0.9612347451543432,120
133,F1Score,0.8571428571428572,120
134,Accuracy,0.9633883704235463,130
135,F1Score,0.8640000000000001,130
136,Accuracy,0.9669777458722182,140
137,F1Score,0.8756756756756757,140
138,Accuracy,0.9612347451543432,150
139,F1Score,0.8548387096774193,150
140,Accuracy,0.9612347451543432,160
141,F1Score,0.8524590163934427,160
142,Accuracy,0.9619526202440776,170
143,F1Score,0.8594164456233423,170
144,Accuracy,0.9633883704235463,180
145,F1Score,0.861788617886179,180
146,Accuracy,0.9669777458722182,190
147,F1Score,0.8756756756756757,190
148,Accuracy,0.95908111988514,200
149,F1Score,0.8488063660477454,200
150,Accuracy,0.9626704953338119,210
151,F1Score,0.860215053763441,210
152,Accuracy,0.9655419956927495,220
153,F1Score,0.8709677419354839,220
154,Accuracy,0.9633883704235463,230
155,F1Score,0.8632707774798928,230
156,Accuracy,0.9655419956927495,240
157,F1Score,0.8723404255319149,240
158,Accuracy,0.968413496051687,250
159,F1Score,0.8810810810810811,250
160,Accuracy,0.964824120603015,260
161,F1Score,0.8672086720867209,260
162,Accuracy,0.8786791098348887,2
163,F1Score,0.48318042813455664,2
164,Accuracy,0.9404163675520459,10
165,F1Score,0.7844155844155843,10
166,Accuracy,0.9569274946159368,20
167,F1Score,0.8351648351648352,20
168,Accuracy,0.9612347451543432,30
169,F1Score,0.848314606741573,30
170,Accuracy,0.9676956209619526,40
171,F1Score,0.8760330578512396,40
172,Accuracy,0.9669777458722182,50
173,F1Score,0.87292817679558,50
174,Accuracy,0.9655419956927495,60
175,F1Score,0.8709677419354839,60
176,Accuracy,0.9662598707824839,70
177,F1Score,0.8733153638814016,70
178,Accuracy,0.9626704953338119,80
179,F1Score,0.8617021276595744,80
180,Accuracy,0.9662598707824839,90
181,F1Score,0.8746666666666667,90
182,Accuracy,0.9655419956927495,100
183,F1Score,0.8709677419354839,100
184,Accuracy,0.9626704953338119,110
185,F1Score,0.8617021276595744,110
186,Accuracy,0.9641062455132807,120
187,F1Score,0.8670212765957447,120
188,Accuracy,0.964824120603015,130
189,F1Score,0.8679245283018868,130
190,Accuracy,0.9641062455132807,140
191,F1Score,0.8655913978494624,140
192,Accuracy,0.9655419956927495,150
193,F1Score,0.8716577540106951,150
194,Accuracy,0.9669777458722182,160
195,F1Score,0.8756756756756757,160
196,Accuracy,0.9597989949748744,170
197,F1Score,0.8478260869565218,170
198,Accuracy,0.9605168700646087,180
199,F1Score,0.8556430446194225,180
200,Accuracy,0.9669777458722182,190
201,F1Score,0.8770053475935828,190
202,Accuracy,0.964824120603015,200
203,F1Score,0.8686327077747988,200
204,Accuracy,0.9655419956927495,210
205,F1Score,0.8709677419354839,210
206,Accuracy,0.9641062455132807,220
207,F1Score,0.8677248677248677,220
208,Accuracy,0.9691313711414213,230
209,F1Score,0.8840970350404314,230
210,Accuracy,0.9612347451543432,240
211,F1Score,0.8578947368421053,240
212,Accuracy,0.9655419956927495,250
213,F1Score,0.8709677419354839,250
214,Accuracy,0.9633883704235463,260
215,F1Score,0.8647214854111406,260
216,Accuracy,0.8786791098348887,2
217,F1Score,0.48318042813455664,2
218,Accuracy,0.9382627422828428,10
219,F1Score,0.7783505154639175,10
220,Accuracy,0.9597989949748744,20
221,F1Score,0.8435754189944135,20
222,Accuracy,0.9626704953338119,30
223,F1Score,0.8547486033519553,30
224,Accuracy,0.9655419956927495,40
225,F1Score,0.8666666666666667,40
226,Accuracy,0.9705671213208902,50
227,F1Score,0.8864265927977839,50
228,Accuracy,0.9633883704235463,60
229,F1Score,0.8610354223433242,60
230,Accuracy,0.964824120603015,70
231,F1Score,0.8672086720867209,70
232,Accuracy,0.9633883704235463,80
233,F1Score,0.8625336927223719,80
234,Accuracy,0.9669777458722182,90
235,F1Score,0.8770053475935828,90
236,Accuracy,0.9676956209619526,100
237,F1Score,0.8787061994609164,100
238,Accuracy,0.9655419956927495,110
239,F1Score,0.8716577540106951,110
240,Accuracy,0.9619526202440776,120
241,F1Score,0.8601583113456465,120
242,Accuracy,0.9662598707824839,130
243,F1Score,0.8733153638814016,130
244,Accuracy,0.9698492462311558,140
245,F1Score,0.8864864864864865,140
246,Accuracy,0.9669777458722182,150
247,F1Score,0.8776595744680851,150
248,Accuracy,0.9641062455132807,160
249,F1Score,0.8626373626373626,160
250,Accuracy,0.9655419956927495,170
251,F1Score,0.8736842105263158,170
252,Accuracy,0.9641062455132807,180
253,F1Score,0.8677248677248677,180
254,Accuracy,0.9669777458722182,190
255,F1Score,0.8776595744680851,190
256,Accuracy,0.9662598707824839,200
257,F1Score,0.8753315649867375,200
258,Accuracy,0.9626704953338119,210
259,F1Score,0.8638743455497383,210
260,Accuracy,0.964824120603015,220
261,F1Score,0.8693333333333333,220
262,Accuracy,0.9662598707824839,230
263,F1Score,0.8746666666666667,230
264,Accuracy,0.9641062455132807,240
265,F1Score,0.8648648648648649,240
266,Accuracy,0.9669777458722182,250
267,F1Score,0.8756756756756757,250
268,Accuracy,0.9669777458722182,260
269,F1Score,0.8763440860215054,260
1 Measure Value MaxLeafNodes
2 0 Accuracy 0.8786791098348887 2
3 1 F1Score 0.48318042813455664 2
4 2 Accuracy 0.9404163675520459 10
5 3 F1Score 0.7844155844155843 10
6 4 Accuracy 0.95908111988514 20
7 5 F1Score 0.841225626740947 20
8 6 Accuracy 0.9626704953338119 30
9 7 F1Score 0.8547486033519553 30
10 8 Accuracy 0.968413496051687 40
11 9 F1Score 0.8784530386740332 40
12 10 Accuracy 0.9669777458722182 50
13 11 F1Score 0.87292817679558 50
14 12 Accuracy 0.9626704953338119 60
15 13 F1Score 0.8609625668449198 60
16 14 Accuracy 0.9655419956927495 70
17 15 F1Score 0.8688524590163934 70
18 16 Accuracy 0.964824120603015 80
19 17 F1Score 0.8672086720867209 80
20 18 Accuracy 0.9626704953338119 90
21 19 F1Score 0.8631578947368422 90
22 20 Accuracy 0.9641062455132807 100
23 21 F1Score 0.8648648648648649 100
24 22 Accuracy 0.9612347451543432 110
25 23 F1Score 0.8556149732620321 110
26 24 Accuracy 0.9641062455132807 120
27 25 F1Score 0.8670212765957447 120
28 26 Accuracy 0.9655419956927495 130
29 27 F1Score 0.8723404255319149 130
30 28 Accuracy 0.9655419956927495 140
31 29 F1Score 0.8702702702702703 140
32 30 Accuracy 0.9633883704235463 150
33 31 F1Score 0.8647214854111406 150
34 32 Accuracy 0.9605168700646087 160
35 33 F1Score 0.8517520215633423 160
36 34 Accuracy 0.9612347451543432 170
37 35 F1Score 0.8571428571428572 170
38 36 Accuracy 0.9641062455132807 180
39 37 F1Score 0.8648648648648649 180
40 38 Accuracy 0.9576453697056713 190
41 39 F1Score 0.8426666666666667 190
42 40 Accuracy 0.9662598707824839 200
43 41 F1Score 0.872628726287263 200
44 42 Accuracy 0.9612347451543432 210
45 43 F1Score 0.8578947368421053 210
46 44 Accuracy 0.9669777458722182 220
47 45 F1Score 0.8763440860215054 220
48 46 Accuracy 0.9619526202440776 230
49 47 F1Score 0.8601583113456465 230
50 48 Accuracy 0.9669777458722182 240
51 49 F1Score 0.8756756756756757 240
52 50 Accuracy 0.964824120603015 250
53 51 F1Score 0.8679245283018868 250
54 52 Accuracy 0.9641062455132807 260
55 53 F1Score 0.8670212765957447 260
56 54 Accuracy 0.8786791098348887 2
57 55 F1Score 0.48318042813455664 2
58 56 Accuracy 0.9382627422828428 10
59 57 F1Score 0.7783505154639175 10
60 58 Accuracy 0.95908111988514 20
61 59 F1Score 0.8463611859838276 20
62 60 Accuracy 0.9633883704235463 30
63 61 F1Score 0.8571428571428571 30
64 62 Accuracy 0.9698492462311558 40
65 63 F1Score 0.8820224719101123 40
66 64 Accuracy 0.968413496051687 50
67 65 F1Score 0.8791208791208792 50
68 66 Accuracy 0.9626704953338119 60
69 67 F1Score 0.8586956521739131 60
70 68 Accuracy 0.964824120603015 70
71 69 F1Score 0.8693333333333333 70
72 70 Accuracy 0.964824120603015 80
73 71 F1Score 0.8679245283018868 80
74 72 Accuracy 0.9655419956927495 90
75 73 F1Score 0.8702702702702703 90
76 74 Accuracy 0.9612347451543432 100
77 75 F1Score 0.8556149732620321 100
78 76 Accuracy 0.9612347451543432 110
79 77 F1Score 0.8532608695652173 110
80 78 Accuracy 0.9612347451543432 120
81 79 F1Score 0.8586387434554974 120
82 80 Accuracy 0.9676956209619526 130
83 81 F1Score 0.88 130
84 82 Accuracy 0.9655419956927495 140
85 83 F1Score 0.8709677419354839 140
86 84 Accuracy 0.9626704953338119 150
87 85 F1Score 0.8624338624338624 150
88 86 Accuracy 0.968413496051687 160
89 87 F1Score 0.8810810810810811 160
90 88 Accuracy 0.9641062455132807 170
91 89 F1Score 0.8655913978494624 170
92 90 Accuracy 0.9641062455132807 180
93 91 F1Score 0.868421052631579 180
94 92 Accuracy 0.9597989949748744 190
95 93 F1Score 0.8526315789473685 190
96 94 Accuracy 0.9605168700646087 200
97 95 F1Score 0.8533333333333334 200
98 96 Accuracy 0.9676956209619526 210
99 97 F1Score 0.8787061994609164 210
100 98 Accuracy 0.9619526202440776 220
101 99 F1Score 0.8579088471849866 220
102 100 Accuracy 0.9641062455132807 230
103 101 F1Score 0.8663101604278075 230
104 102 Accuracy 0.964824120603015 240
105 103 F1Score 0.8664850136239781 240
106 104 Accuracy 0.9641062455132807 250
107 105 F1Score 0.8677248677248677 250
108 106 Accuracy 0.9662598707824839 260
109 107 F1Score 0.873994638069705 260
110 108 Accuracy 0.8786791098348887 2
111 109 F1Score 0.48318042813455664 2
112 110 Accuracy 0.9382627422828428 10
113 111 F1Score 0.7783505154639175 10
114 112 Accuracy 0.9597989949748744 20
115 113 F1Score 0.849462365591398 20
116 114 Accuracy 0.964824120603015 30
117 115 F1Score 0.8635097493036211 30
118 116 Accuracy 0.9662598707824839 40
119 117 F1Score 0.8705234159779616 40
120 118 Accuracy 0.9691313711414213 50
121 119 F1Score 0.8802228412256268 50
122 120 Accuracy 0.9655419956927495 60
123 121 F1Score 0.8709677419354839 60
124 122 Accuracy 0.9633883704235463 70
125 123 F1Score 0.8647214854111406 70
126 124 Accuracy 0.9569274946159368 80
127 125 F1Score 0.8412698412698413 80
128 126 Accuracy 0.9633883704235463 90
129 127 F1Score 0.8640000000000001 90
130 128 Accuracy 0.9619526202440776 100
131 129 F1Score 0.8601583113456465 100
132 130 Accuracy 0.9576453697056713 110
133 131 F1Score 0.8426666666666667 110
134 132 Accuracy 0.9612347451543432 120
135 133 F1Score 0.8571428571428572 120
136 134 Accuracy 0.9633883704235463 130
137 135 F1Score 0.8640000000000001 130
138 136 Accuracy 0.9669777458722182 140
139 137 F1Score 0.8756756756756757 140
140 138 Accuracy 0.9612347451543432 150
141 139 F1Score 0.8548387096774193 150
142 140 Accuracy 0.9612347451543432 160
143 141 F1Score 0.8524590163934427 160
144 142 Accuracy 0.9619526202440776 170
145 143 F1Score 0.8594164456233423 170
146 144 Accuracy 0.9633883704235463 180
147 145 F1Score 0.861788617886179 180
148 146 Accuracy 0.9669777458722182 190
149 147 F1Score 0.8756756756756757 190
150 148 Accuracy 0.95908111988514 200
151 149 F1Score 0.8488063660477454 200
152 150 Accuracy 0.9626704953338119 210
153 151 F1Score 0.860215053763441 210
154 152 Accuracy 0.9655419956927495 220
155 153 F1Score 0.8709677419354839 220
156 154 Accuracy 0.9633883704235463 230
157 155 F1Score 0.8632707774798928 230
158 156 Accuracy 0.9655419956927495 240
159 157 F1Score 0.8723404255319149 240
160 158 Accuracy 0.968413496051687 250
161 159 F1Score 0.8810810810810811 250
162 160 Accuracy 0.964824120603015 260
163 161 F1Score 0.8672086720867209 260
164 162 Accuracy 0.8786791098348887 2
165 163 F1Score 0.48318042813455664 2
166 164 Accuracy 0.9404163675520459 10
167 165 F1Score 0.7844155844155843 10
168 166 Accuracy 0.9569274946159368 20
169 167 F1Score 0.8351648351648352 20
170 168 Accuracy 0.9612347451543432 30
171 169 F1Score 0.848314606741573 30
172 170 Accuracy 0.9676956209619526 40
173 171 F1Score 0.8760330578512396 40
174 172 Accuracy 0.9669777458722182 50
175 173 F1Score 0.87292817679558 50
176 174 Accuracy 0.9655419956927495 60
177 175 F1Score 0.8709677419354839 60
178 176 Accuracy 0.9662598707824839 70
179 177 F1Score 0.8733153638814016 70
180 178 Accuracy 0.9626704953338119 80
181 179 F1Score 0.8617021276595744 80
182 180 Accuracy 0.9662598707824839 90
183 181 F1Score 0.8746666666666667 90
184 182 Accuracy 0.9655419956927495 100
185 183 F1Score 0.8709677419354839 100
186 184 Accuracy 0.9626704953338119 110
187 185 F1Score 0.8617021276595744 110
188 186 Accuracy 0.9641062455132807 120
189 187 F1Score 0.8670212765957447 120
190 188 Accuracy 0.964824120603015 130
191 189 F1Score 0.8679245283018868 130
192 190 Accuracy 0.9641062455132807 140
193 191 F1Score 0.8655913978494624 140
194 192 Accuracy 0.9655419956927495 150
195 193 F1Score 0.8716577540106951 150
196 194 Accuracy 0.9669777458722182 160
197 195 F1Score 0.8756756756756757 160
198 196 Accuracy 0.9597989949748744 170
199 197 F1Score 0.8478260869565218 170
200 198 Accuracy 0.9605168700646087 180
201 199 F1Score 0.8556430446194225 180
202 200 Accuracy 0.9669777458722182 190
203 201 F1Score 0.8770053475935828 190
204 202 Accuracy 0.964824120603015 200
205 203 F1Score 0.8686327077747988 200
206 204 Accuracy 0.9655419956927495 210
207 205 F1Score 0.8709677419354839 210
208 206 Accuracy 0.9641062455132807 220
209 207 F1Score 0.8677248677248677 220
210 208 Accuracy 0.9691313711414213 230
211 209 F1Score 0.8840970350404314 230
212 210 Accuracy 0.9612347451543432 240
213 211 F1Score 0.8578947368421053 240
214 212 Accuracy 0.9655419956927495 250
215 213 F1Score 0.8709677419354839 250
216 214 Accuracy 0.9633883704235463 260
217 215 F1Score 0.8647214854111406 260
218 216 Accuracy 0.8786791098348887 2
219 217 F1Score 0.48318042813455664 2
220 218 Accuracy 0.9382627422828428 10
221 219 F1Score 0.7783505154639175 10
222 220 Accuracy 0.9597989949748744 20
223 221 F1Score 0.8435754189944135 20
224 222 Accuracy 0.9626704953338119 30
225 223 F1Score 0.8547486033519553 30
226 224 Accuracy 0.9655419956927495 40
227 225 F1Score 0.8666666666666667 40
228 226 Accuracy 0.9705671213208902 50
229 227 F1Score 0.8864265927977839 50
230 228 Accuracy 0.9633883704235463 60
231 229 F1Score 0.8610354223433242 60
232 230 Accuracy 0.964824120603015 70
233 231 F1Score 0.8672086720867209 70
234 232 Accuracy 0.9633883704235463 80
235 233 F1Score 0.8625336927223719 80
236 234 Accuracy 0.9669777458722182 90
237 235 F1Score 0.8770053475935828 90
238 236 Accuracy 0.9676956209619526 100
239 237 F1Score 0.8787061994609164 100
240 238 Accuracy 0.9655419956927495 110
241 239 F1Score 0.8716577540106951 110
242 240 Accuracy 0.9619526202440776 120
243 241 F1Score 0.8601583113456465 120
244 242 Accuracy 0.9662598707824839 130
245 243 F1Score 0.8733153638814016 130
246 244 Accuracy 0.9698492462311558 140
247 245 F1Score 0.8864864864864865 140
248 246 Accuracy 0.9669777458722182 150
249 247 F1Score 0.8776595744680851 150
250 248 Accuracy 0.9641062455132807 160
251 249 F1Score 0.8626373626373626 160
252 250 Accuracy 0.9655419956927495 170
253 251 F1Score 0.8736842105263158 170
254 252 Accuracy 0.9641062455132807 180
255 253 F1Score 0.8677248677248677 180
256 254 Accuracy 0.9669777458722182 190
257 255 F1Score 0.8776595744680851 190
258 256 Accuracy 0.9662598707824839 200
259 257 F1Score 0.8753315649867375 200
260 258 Accuracy 0.9626704953338119 210
261 259 F1Score 0.8638743455497383 210
262 260 Accuracy 0.964824120603015 220
263 261 F1Score 0.8693333333333333 220
264 262 Accuracy 0.9662598707824839 230
265 263 F1Score 0.8746666666666667 230
266 264 Accuracy 0.9641062455132807 240
267 265 F1Score 0.8648648648648649 240
268 266 Accuracy 0.9669777458722182 250
269 267 F1Score 0.8756756756756757 250
270 268 Accuracy 0.9669777458722182 260
271 269 F1Score 0.8763440860215054 260

View File

@ -0,0 +1,261 @@
,Measure,Value,MinImpurityDecrease
0,Accuracy,0.9583632447954056,0.0%
1,F1Score,0.8473684210526314,0.0%
2,Accuracy,0.9310839913854989,0.5%
3,F1Score,0.7587939698492463,0.5%
4,Accuracy,0.9339554917444365,1.0%
5,F1Score,0.7444444444444445,1.0%
6,Accuracy,0.9167264895908112,1.5%
7,F1Score,0.6979166666666666,1.5%
8,Accuracy,0.908829863603733,2.0%
9,F1Score,0.6576819407008087,2.0%
10,Accuracy,0.908829863603733,2.5%
11,F1Score,0.6576819407008087,2.5%
12,Accuracy,0.908829863603733,3.0%
13,F1Score,0.6576819407008087,3.0%
14,Accuracy,0.908829863603733,3.5%
15,F1Score,0.6576819407008087,3.5%
16,Accuracy,0.8786791098348887,4.0%
17,F1Score,0.48318042813455664,4.0%
18,Accuracy,0.8786791098348887,4.5%
19,F1Score,0.48318042813455664,4.5%
20,Accuracy,0.8671931083991385,5.0%
21,F1Score,0.0,5.0%
22,Accuracy,0.8671931083991385,5.5%
23,F1Score,0.0,5.5%
24,Accuracy,0.8671931083991385,6.0%
25,F1Score,0.0,6.0%
26,Accuracy,0.9633883704235463,0.0%
27,F1Score,0.8654353562005278,0.0%
28,Accuracy,0.9332376166547021,0.5%
29,F1Score,0.7645569620253164,0.5%
30,Accuracy,0.9339554917444365,1.0%
31,F1Score,0.7444444444444445,1.0%
32,Accuracy,0.9167264895908112,1.5%
33,F1Score,0.6979166666666666,1.5%
34,Accuracy,0.908829863603733,2.0%
35,F1Score,0.6576819407008087,2.0%
36,Accuracy,0.908829863603733,2.5%
37,F1Score,0.6576819407008087,2.5%
38,Accuracy,0.908829863603733,3.0%
39,F1Score,0.6576819407008087,3.0%
40,Accuracy,0.908829863603733,3.5%
41,F1Score,0.6576819407008087,3.5%
42,Accuracy,0.8786791098348887,4.0%
43,F1Score,0.48318042813455664,4.0%
44,Accuracy,0.8786791098348887,4.5%
45,F1Score,0.48318042813455664,4.5%
46,Accuracy,0.8671931083991385,5.0%
47,F1Score,0.0,5.0%
48,Accuracy,0.8671931083991385,5.5%
49,F1Score,0.0,5.5%
50,Accuracy,0.8671931083991385,6.0%
51,F1Score,0.0,6.0%
52,Accuracy,0.964824120603015,0.0%
53,F1Score,0.8693333333333333,0.0%
54,Accuracy,0.9332376166547021,0.5%
55,F1Score,0.7645569620253164,0.5%
56,Accuracy,0.9339554917444365,1.0%
57,F1Score,0.7444444444444445,1.0%
58,Accuracy,0.9167264895908112,1.5%
59,F1Score,0.6979166666666666,1.5%
60,Accuracy,0.908829863603733,2.0%
61,F1Score,0.6576819407008087,2.0%
62,Accuracy,0.908829863603733,2.5%
63,F1Score,0.6576819407008087,2.5%
64,Accuracy,0.908829863603733,3.0%
65,F1Score,0.6576819407008087,3.0%
66,Accuracy,0.908829863603733,3.5%
67,F1Score,0.6576819407008087,3.5%
68,Accuracy,0.8786791098348887,4.0%
69,F1Score,0.48318042813455664,4.0%
70,Accuracy,0.8786791098348887,4.5%
71,F1Score,0.48318042813455664,4.5%
72,Accuracy,0.8671931083991385,5.0%
73,F1Score,0.0,5.0%
74,Accuracy,0.8671931083991385,5.5%
75,F1Score,0.0,5.5%
76,Accuracy,0.8671931083991385,6.0%
77,F1Score,0.0,6.0%
78,Accuracy,0.9705671213208902,0.0%
79,F1Score,0.888888888888889,0.0%
80,Accuracy,0.9310839913854989,0.5%
81,F1Score,0.7587939698492463,0.5%
82,Accuracy,0.9339554917444365,1.0%
83,F1Score,0.7444444444444445,1.0%
84,Accuracy,0.9167264895908112,1.5%
85,F1Score,0.6979166666666666,1.5%
86,Accuracy,0.908829863603733,2.0%
87,F1Score,0.6576819407008087,2.0%
88,Accuracy,0.908829863603733,2.5%
89,F1Score,0.6576819407008087,2.5%
90,Accuracy,0.908829863603733,3.0%
91,F1Score,0.6576819407008087,3.0%
92,Accuracy,0.908829863603733,3.5%
93,F1Score,0.6576819407008087,3.5%
94,Accuracy,0.8786791098348887,4.0%
95,F1Score,0.48318042813455664,4.0%
96,Accuracy,0.8786791098348887,4.5%
97,F1Score,0.48318042813455664,4.5%
98,Accuracy,0.8671931083991385,5.0%
99,F1Score,0.0,5.0%
100,Accuracy,0.8671931083991385,5.5%
101,F1Score,0.0,5.5%
102,Accuracy,0.8671931083991385,6.0%
103,F1Score,0.0,6.0%
104,Accuracy,0.964824120603015,0.0%
105,F1Score,0.870026525198939,0.0%
106,Accuracy,0.9310839913854989,0.5%
107,F1Score,0.7587939698492463,0.5%
108,Accuracy,0.9339554917444365,1.0%
109,F1Score,0.7444444444444445,1.0%
110,Accuracy,0.9167264895908112,1.5%
111,F1Score,0.6979166666666666,1.5%
112,Accuracy,0.908829863603733,2.0%
113,F1Score,0.6576819407008087,2.0%
114,Accuracy,0.908829863603733,2.5%
115,F1Score,0.6576819407008087,2.5%
116,Accuracy,0.908829863603733,3.0%
117,F1Score,0.6576819407008087,3.0%
118,Accuracy,0.908829863603733,3.5%
119,F1Score,0.6576819407008087,3.5%
120,Accuracy,0.8786791098348887,4.0%
121,F1Score,0.48318042813455664,4.0%
122,Accuracy,0.8786791098348887,4.5%
123,F1Score,0.48318042813455664,4.5%
124,Accuracy,0.8671931083991385,5.0%
125,F1Score,0.0,5.0%
126,Accuracy,0.8671931083991385,5.5%
127,F1Score,0.0,5.5%
128,Accuracy,0.8671931083991385,6.0%
129,F1Score,0.0,6.0%
130,Accuracy,0.9633883704235463,0.0%
131,F1Score,0.8661417322834645,0.0%
132,Accuracy,0.9310839913854989,0.5%
133,F1Score,0.7587939698492463,0.5%
134,Accuracy,0.9339554917444365,1.0%
135,F1Score,0.7444444444444445,1.0%
136,Accuracy,0.9167264895908112,1.5%
137,F1Score,0.6979166666666666,1.5%
138,Accuracy,0.908829863603733,2.0%
139,F1Score,0.6576819407008087,2.0%
140,Accuracy,0.908829863603733,2.5%
141,F1Score,0.6576819407008087,2.5%
142,Accuracy,0.908829863603733,3.0%
143,F1Score,0.6576819407008087,3.0%
144,Accuracy,0.908829863603733,3.5%
145,F1Score,0.6576819407008087,3.5%
146,Accuracy,0.8786791098348887,4.0%
147,F1Score,0.48318042813455664,4.0%
148,Accuracy,0.8786791098348887,4.5%
149,F1Score,0.48318042813455664,4.5%
150,Accuracy,0.8671931083991385,5.0%
151,F1Score,0.0,5.0%
152,Accuracy,0.8671931083991385,5.5%
153,F1Score,0.0,5.5%
154,Accuracy,0.8671931083991385,6.0%
155,F1Score,0.0,6.0%
156,Accuracy,0.9626704953338119,0.0%
157,F1Score,0.8609625668449198,0.0%
158,Accuracy,0.9332376166547021,0.5%
159,F1Score,0.7645569620253164,0.5%
160,Accuracy,0.9339554917444365,1.0%
161,F1Score,0.7444444444444445,1.0%
162,Accuracy,0.9167264895908112,1.5%
163,F1Score,0.6979166666666666,1.5%
164,Accuracy,0.908829863603733,2.0%
165,F1Score,0.6576819407008087,2.0%
166,Accuracy,0.908829863603733,2.5%
167,F1Score,0.6576819407008087,2.5%
168,Accuracy,0.908829863603733,3.0%
169,F1Score,0.6576819407008087,3.0%
170,Accuracy,0.908829863603733,3.5%
171,F1Score,0.6576819407008087,3.5%
172,Accuracy,0.8786791098348887,4.0%
173,F1Score,0.48318042813455664,4.0%
174,Accuracy,0.8786791098348887,4.5%
175,F1Score,0.48318042813455664,4.5%
176,Accuracy,0.8671931083991385,5.0%
177,F1Score,0.0,5.0%
178,Accuracy,0.8671931083991385,5.5%
179,F1Score,0.0,5.5%
180,Accuracy,0.8671931083991385,6.0%
181,F1Score,0.0,6.0%
182,Accuracy,0.9633883704235463,0.0%
183,F1Score,0.8625336927223719,0.0%
184,Accuracy,0.9310839913854989,0.5%
185,F1Score,0.7587939698492463,0.5%
186,Accuracy,0.9339554917444365,1.0%
187,F1Score,0.7444444444444445,1.0%
188,Accuracy,0.9167264895908112,1.5%
189,F1Score,0.6979166666666666,1.5%
190,Accuracy,0.908829863603733,2.0%
191,F1Score,0.6576819407008087,2.0%
192,Accuracy,0.908829863603733,2.5%
193,F1Score,0.6576819407008087,2.5%
194,Accuracy,0.908829863603733,3.0%
195,F1Score,0.6576819407008087,3.0%
196,Accuracy,0.908829863603733,3.5%
197,F1Score,0.6576819407008087,3.5%
198,Accuracy,0.8786791098348887,4.0%
199,F1Score,0.48318042813455664,4.0%
200,Accuracy,0.8786791098348887,4.5%
201,F1Score,0.48318042813455664,4.5%
202,Accuracy,0.8671931083991385,5.0%
203,F1Score,0.0,5.0%
204,Accuracy,0.8671931083991385,5.5%
205,F1Score,0.0,5.5%
206,Accuracy,0.8671931083991385,6.0%
207,F1Score,0.0,6.0%
208,Accuracy,0.9626704953338119,0.0%
209,F1Score,0.8609625668449198,0.0%
210,Accuracy,0.9310839913854989,0.5%
211,F1Score,0.7587939698492463,0.5%
212,Accuracy,0.9339554917444365,1.0%
213,F1Score,0.7444444444444445,1.0%
214,Accuracy,0.9167264895908112,1.5%
215,F1Score,0.6979166666666666,1.5%
216,Accuracy,0.908829863603733,2.0%
217,F1Score,0.6576819407008087,2.0%
218,Accuracy,0.908829863603733,2.5%
219,F1Score,0.6576819407008087,2.5%
220,Accuracy,0.908829863603733,3.0%
221,F1Score,0.6576819407008087,3.0%
222,Accuracy,0.908829863603733,3.5%
223,F1Score,0.6576819407008087,3.5%
224,Accuracy,0.8786791098348887,4.0%
225,F1Score,0.48318042813455664,4.0%
226,Accuracy,0.8786791098348887,4.5%
227,F1Score,0.48318042813455664,4.5%
228,Accuracy,0.8671931083991385,5.0%
229,F1Score,0.0,5.0%
230,Accuracy,0.8671931083991385,5.5%
231,F1Score,0.0,5.5%
232,Accuracy,0.8671931083991385,6.0%
233,F1Score,0.0,6.0%
234,Accuracy,0.95908111988514,0.0%
235,F1Score,0.8463611859838276,0.0%
236,Accuracy,0.9332376166547021,0.5%
237,F1Score,0.7645569620253164,0.5%
238,Accuracy,0.9339554917444365,1.0%
239,F1Score,0.7444444444444445,1.0%
240,Accuracy,0.9167264895908112,1.5%
241,F1Score,0.6979166666666666,1.5%
242,Accuracy,0.908829863603733,2.0%
243,F1Score,0.6576819407008087,2.0%
244,Accuracy,0.908829863603733,2.5%
245,F1Score,0.6576819407008087,2.5%
246,Accuracy,0.908829863603733,3.0%
247,F1Score,0.6576819407008087,3.0%
248,Accuracy,0.908829863603733,3.5%
249,F1Score,0.6576819407008087,3.5%
250,Accuracy,0.8786791098348887,4.0%
251,F1Score,0.48318042813455664,4.0%
252,Accuracy,0.8786791098348887,4.5%
253,F1Score,0.48318042813455664,4.5%
254,Accuracy,0.8671931083991385,5.0%
255,F1Score,0.0,5.0%
256,Accuracy,0.8671931083991385,5.5%
257,F1Score,0.0,5.5%
258,Accuracy,0.8671931083991385,6.0%
259,F1Score,0.0,6.0%
1 Measure Value MinImpurityDecrease
2 0 Accuracy 0.9583632447954056 0.0%
3 1 F1Score 0.8473684210526314 0.0%
4 2 Accuracy 0.9310839913854989 0.5%
5 3 F1Score 0.7587939698492463 0.5%
6 4 Accuracy 0.9339554917444365 1.0%
7 5 F1Score 0.7444444444444445 1.0%
8 6 Accuracy 0.9167264895908112 1.5%
9 7 F1Score 0.6979166666666666 1.5%
10 8 Accuracy 0.908829863603733 2.0%
11 9 F1Score 0.6576819407008087 2.0%
12 10 Accuracy 0.908829863603733 2.5%
13 11 F1Score 0.6576819407008087 2.5%
14 12 Accuracy 0.908829863603733 3.0%
15 13 F1Score 0.6576819407008087 3.0%
16 14 Accuracy 0.908829863603733 3.5%
17 15 F1Score 0.6576819407008087 3.5%
18 16 Accuracy 0.8786791098348887 4.0%
19 17 F1Score 0.48318042813455664 4.0%
20 18 Accuracy 0.8786791098348887 4.5%
21 19 F1Score 0.48318042813455664 4.5%
22 20 Accuracy 0.8671931083991385 5.0%
23 21 F1Score 0.0 5.0%
24 22 Accuracy 0.8671931083991385 5.5%
25 23 F1Score 0.0 5.5%
26 24 Accuracy 0.8671931083991385 6.0%
27 25 F1Score 0.0 6.0%
28 26 Accuracy 0.9633883704235463 0.0%
29 27 F1Score 0.8654353562005278 0.0%
30 28 Accuracy 0.9332376166547021 0.5%
31 29 F1Score 0.7645569620253164 0.5%
32 30 Accuracy 0.9339554917444365 1.0%
33 31 F1Score 0.7444444444444445 1.0%
34 32 Accuracy 0.9167264895908112 1.5%
35 33 F1Score 0.6979166666666666 1.5%
36 34 Accuracy 0.908829863603733 2.0%
37 35 F1Score 0.6576819407008087 2.0%
38 36 Accuracy 0.908829863603733 2.5%
39 37 F1Score 0.6576819407008087 2.5%
40 38 Accuracy 0.908829863603733 3.0%
41 39 F1Score 0.6576819407008087 3.0%
42 40 Accuracy 0.908829863603733 3.5%
43 41 F1Score 0.6576819407008087 3.5%
44 42 Accuracy 0.8786791098348887 4.0%
45 43 F1Score 0.48318042813455664 4.0%
46 44 Accuracy 0.8786791098348887 4.5%
47 45 F1Score 0.48318042813455664 4.5%
48 46 Accuracy 0.8671931083991385 5.0%
49 47 F1Score 0.0 5.0%
50 48 Accuracy 0.8671931083991385 5.5%
51 49 F1Score 0.0 5.5%
52 50 Accuracy 0.8671931083991385 6.0%
53 51 F1Score 0.0 6.0%
54 52 Accuracy 0.964824120603015 0.0%
55 53 F1Score 0.8693333333333333 0.0%
56 54 Accuracy 0.9332376166547021 0.5%
57 55 F1Score 0.7645569620253164 0.5%
58 56 Accuracy 0.9339554917444365 1.0%
59 57 F1Score 0.7444444444444445 1.0%
60 58 Accuracy 0.9167264895908112 1.5%
61 59 F1Score 0.6979166666666666 1.5%
62 60 Accuracy 0.908829863603733 2.0%
63 61 F1Score 0.6576819407008087 2.0%
64 62 Accuracy 0.908829863603733 2.5%
65 63 F1Score 0.6576819407008087 2.5%
66 64 Accuracy 0.908829863603733 3.0%
67 65 F1Score 0.6576819407008087 3.0%
68 66 Accuracy 0.908829863603733 3.5%
69 67 F1Score 0.6576819407008087 3.5%
70 68 Accuracy 0.8786791098348887 4.0%
71 69 F1Score 0.48318042813455664 4.0%
72 70 Accuracy 0.8786791098348887 4.5%
73 71 F1Score 0.48318042813455664 4.5%
74 72 Accuracy 0.8671931083991385 5.0%
75 73 F1Score 0.0 5.0%
76 74 Accuracy 0.8671931083991385 5.5%
77 75 F1Score 0.0 5.5%
78 76 Accuracy 0.8671931083991385 6.0%
79 77 F1Score 0.0 6.0%
80 78 Accuracy 0.9705671213208902 0.0%
81 79 F1Score 0.888888888888889 0.0%
82 80 Accuracy 0.9310839913854989 0.5%
83 81 F1Score 0.7587939698492463 0.5%
84 82 Accuracy 0.9339554917444365 1.0%
85 83 F1Score 0.7444444444444445 1.0%
86 84 Accuracy 0.9167264895908112 1.5%
87 85 F1Score 0.6979166666666666 1.5%
88 86 Accuracy 0.908829863603733 2.0%
89 87 F1Score 0.6576819407008087 2.0%
90 88 Accuracy 0.908829863603733 2.5%
91 89 F1Score 0.6576819407008087 2.5%
92 90 Accuracy 0.908829863603733 3.0%
93 91 F1Score 0.6576819407008087 3.0%
94 92 Accuracy 0.908829863603733 3.5%
95 93 F1Score 0.6576819407008087 3.5%
96 94 Accuracy 0.8786791098348887 4.0%
97 95 F1Score 0.48318042813455664 4.0%
98 96 Accuracy 0.8786791098348887 4.5%
99 97 F1Score 0.48318042813455664 4.5%
100 98 Accuracy 0.8671931083991385 5.0%
101 99 F1Score 0.0 5.0%
102 100 Accuracy 0.8671931083991385 5.5%
103 101 F1Score 0.0 5.5%
104 102 Accuracy 0.8671931083991385 6.0%
105 103 F1Score 0.0 6.0%
106 104 Accuracy 0.964824120603015 0.0%
107 105 F1Score 0.870026525198939 0.0%
108 106 Accuracy 0.9310839913854989 0.5%
109 107 F1Score 0.7587939698492463 0.5%
110 108 Accuracy 0.9339554917444365 1.0%
111 109 F1Score 0.7444444444444445 1.0%
112 110 Accuracy 0.9167264895908112 1.5%
113 111 F1Score 0.6979166666666666 1.5%
114 112 Accuracy 0.908829863603733 2.0%
115 113 F1Score 0.6576819407008087 2.0%
116 114 Accuracy 0.908829863603733 2.5%
117 115 F1Score 0.6576819407008087 2.5%
118 116 Accuracy 0.908829863603733 3.0%
119 117 F1Score 0.6576819407008087 3.0%
120 118 Accuracy 0.908829863603733 3.5%
121 119 F1Score 0.6576819407008087 3.5%
122 120 Accuracy 0.8786791098348887 4.0%
123 121 F1Score 0.48318042813455664 4.0%
124 122 Accuracy 0.8786791098348887 4.5%
125 123 F1Score 0.48318042813455664 4.5%
126 124 Accuracy 0.8671931083991385 5.0%
127 125 F1Score 0.0 5.0%
128 126 Accuracy 0.8671931083991385 5.5%
129 127 F1Score 0.0 5.5%
130 128 Accuracy 0.8671931083991385 6.0%
131 129 F1Score 0.0 6.0%
132 130 Accuracy 0.9633883704235463 0.0%
133 131 F1Score 0.8661417322834645 0.0%
134 132 Accuracy 0.9310839913854989 0.5%
135 133 F1Score 0.7587939698492463 0.5%
136 134 Accuracy 0.9339554917444365 1.0%
137 135 F1Score 0.7444444444444445 1.0%
138 136 Accuracy 0.9167264895908112 1.5%
139 137 F1Score 0.6979166666666666 1.5%
140 138 Accuracy 0.908829863603733 2.0%
141 139 F1Score 0.6576819407008087 2.0%
142 140 Accuracy 0.908829863603733 2.5%
143 141 F1Score 0.6576819407008087 2.5%
144 142 Accuracy 0.908829863603733 3.0%
145 143 F1Score 0.6576819407008087 3.0%
146 144 Accuracy 0.908829863603733 3.5%
147 145 F1Score 0.6576819407008087 3.5%
148 146 Accuracy 0.8786791098348887 4.0%
149 147 F1Score 0.48318042813455664 4.0%
150 148 Accuracy 0.8786791098348887 4.5%
151 149 F1Score 0.48318042813455664 4.5%
152 150 Accuracy 0.8671931083991385 5.0%
153 151 F1Score 0.0 5.0%
154 152 Accuracy 0.8671931083991385 5.5%
155 153 F1Score 0.0 5.5%
156 154 Accuracy 0.8671931083991385 6.0%
157 155 F1Score 0.0 6.0%
158 156 Accuracy 0.9626704953338119 0.0%
159 157 F1Score 0.8609625668449198 0.0%
160 158 Accuracy 0.9332376166547021 0.5%
161 159 F1Score 0.7645569620253164 0.5%
162 160 Accuracy 0.9339554917444365 1.0%
163 161 F1Score 0.7444444444444445 1.0%
164 162 Accuracy 0.9167264895908112 1.5%
165 163 F1Score 0.6979166666666666 1.5%
166 164 Accuracy 0.908829863603733 2.0%
167 165 F1Score 0.6576819407008087 2.0%
168 166 Accuracy 0.908829863603733 2.5%
169 167 F1Score 0.6576819407008087 2.5%
170 168 Accuracy 0.908829863603733 3.0%
171 169 F1Score 0.6576819407008087 3.0%
172 170 Accuracy 0.908829863603733 3.5%
173 171 F1Score 0.6576819407008087 3.5%
174 172 Accuracy 0.8786791098348887 4.0%
175 173 F1Score 0.48318042813455664 4.0%
176 174 Accuracy 0.8786791098348887 4.5%
177 175 F1Score 0.48318042813455664 4.5%
178 176 Accuracy 0.8671931083991385 5.0%
179 177 F1Score 0.0 5.0%
180 178 Accuracy 0.8671931083991385 5.5%
181 179 F1Score 0.0 5.5%
182 180 Accuracy 0.8671931083991385 6.0%
183 181 F1Score 0.0 6.0%
184 182 Accuracy 0.9633883704235463 0.0%
185 183 F1Score 0.8625336927223719 0.0%
186 184 Accuracy 0.9310839913854989 0.5%
187 185 F1Score 0.7587939698492463 0.5%
188 186 Accuracy 0.9339554917444365 1.0%
189 187 F1Score 0.7444444444444445 1.0%
190 188 Accuracy 0.9167264895908112 1.5%
191 189 F1Score 0.6979166666666666 1.5%
192 190 Accuracy 0.908829863603733 2.0%
193 191 F1Score 0.6576819407008087 2.0%
194 192 Accuracy 0.908829863603733 2.5%
195 193 F1Score 0.6576819407008087 2.5%
196 194 Accuracy 0.908829863603733 3.0%
197 195 F1Score 0.6576819407008087 3.0%
198 196 Accuracy 0.908829863603733 3.5%
199 197 F1Score 0.6576819407008087 3.5%
200 198 Accuracy 0.8786791098348887 4.0%
201 199 F1Score 0.48318042813455664 4.0%
202 200 Accuracy 0.8786791098348887 4.5%
203 201 F1Score 0.48318042813455664 4.5%
204 202 Accuracy 0.8671931083991385 5.0%
205 203 F1Score 0.0 5.0%
206 204 Accuracy 0.8671931083991385 5.5%
207 205 F1Score 0.0 5.5%
208 206 Accuracy 0.8671931083991385 6.0%
209 207 F1Score 0.0 6.0%
210 208 Accuracy 0.9626704953338119 0.0%
211 209 F1Score 0.8609625668449198 0.0%
212 210 Accuracy 0.9310839913854989 0.5%
213 211 F1Score 0.7587939698492463 0.5%
214 212 Accuracy 0.9339554917444365 1.0%
215 213 F1Score 0.7444444444444445 1.0%
216 214 Accuracy 0.9167264895908112 1.5%
217 215 F1Score 0.6979166666666666 1.5%
218 216 Accuracy 0.908829863603733 2.0%
219 217 F1Score 0.6576819407008087 2.0%
220 218 Accuracy 0.908829863603733 2.5%
221 219 F1Score 0.6576819407008087 2.5%
222 220 Accuracy 0.908829863603733 3.0%
223 221 F1Score 0.6576819407008087 3.0%
224 222 Accuracy 0.908829863603733 3.5%
225 223 F1Score 0.6576819407008087 3.5%
226 224 Accuracy 0.8786791098348887 4.0%
227 225 F1Score 0.48318042813455664 4.0%
228 226 Accuracy 0.8786791098348887 4.5%
229 227 F1Score 0.48318042813455664 4.5%
230 228 Accuracy 0.8671931083991385 5.0%
231 229 F1Score 0.0 5.0%
232 230 Accuracy 0.8671931083991385 5.5%
233 231 F1Score 0.0 5.5%
234 232 Accuracy 0.8671931083991385 6.0%
235 233 F1Score 0.0 6.0%
236 234 Accuracy 0.95908111988514 0.0%
237 235 F1Score 0.8463611859838276 0.0%
238 236 Accuracy 0.9332376166547021 0.5%
239 237 F1Score 0.7645569620253164 0.5%
240 238 Accuracy 0.9339554917444365 1.0%
241 239 F1Score 0.7444444444444445 1.0%
242 240 Accuracy 0.9167264895908112 1.5%
243 241 F1Score 0.6979166666666666 1.5%
244 242 Accuracy 0.908829863603733 2.0%
245 243 F1Score 0.6576819407008087 2.0%
246 244 Accuracy 0.908829863603733 2.5%
247 245 F1Score 0.6576819407008087 2.5%
248 246 Accuracy 0.908829863603733 3.0%
249 247 F1Score 0.6576819407008087 3.0%
250 248 Accuracy 0.908829863603733 3.5%
251 249 F1Score 0.6576819407008087 3.5%
252 250 Accuracy 0.8786791098348887 4.0%
253 251 F1Score 0.48318042813455664 4.0%
254 252 Accuracy 0.8786791098348887 4.5%
255 253 F1Score 0.48318042813455664 4.5%
256 254 Accuracy 0.8671931083991385 5.0%
257 255 F1Score 0.0 5.0%
258 256 Accuracy 0.8671931083991385 5.5%
259 257 F1Score 0.0 5.5%
260 258 Accuracy 0.8671931083991385 6.0%
261 259 F1Score 0.0 6.0%

View File

@ -0,0 +1,241 @@
,Measure,Value,MinSampleSplit
0,Accuracy,0.9633883704235463,MinSampleSplit-2
1,F1Score,0.8625336927223719,MinSampleSplit-2
2,Accuracy,0.9669777458722182,MinSampleSplit-10
3,F1Score,0.8763440860215054,MinSampleSplit-10
4,Accuracy,0.9655419956927495,MinSampleSplit-25
5,F1Score,0.8688524590163934,MinSampleSplit-25
6,Accuracy,0.9669777458722182,MinSampleSplit-50
7,F1Score,0.8722222222222223,MinSampleSplit-50
8,Accuracy,0.9519023689877961,MinSampleSplit-100
9,F1Score,0.8295165394402035,MinSampleSplit-100
10,Accuracy,0.9483129935391242,MinSampleSplit-250
11,F1Score,0.8181818181818182,MinSampleSplit-250
12,Accuracy,0.9655419956927495,MinSampleSplit-2
13,F1Score,0.8723404255319149,MinSampleSplit-2
14,Accuracy,0.9641062455132807,MinSampleSplit-10
15,F1Score,0.8677248677248677,MinSampleSplit-10
16,Accuracy,0.9655419956927495,MinSampleSplit-25
17,F1Score,0.8666666666666667,MinSampleSplit-25
18,Accuracy,0.964824120603015,MinSampleSplit-50
19,F1Score,0.8664850136239781,MinSampleSplit-50
20,Accuracy,0.9454414931801867,MinSampleSplit-100
21,F1Score,0.8080808080808082,MinSampleSplit-100
22,Accuracy,0.9504666188083274,MinSampleSplit-250
23,F1Score,0.8244274809160306,MinSampleSplit-250
24,Accuracy,0.95908111988514,MinSampleSplit-2
25,F1Score,0.8503937007874017,MinSampleSplit-2
26,Accuracy,0.9676956209619526,MinSampleSplit-10
27,F1Score,0.8787061994609164,MinSampleSplit-10
28,Accuracy,0.9641062455132807,MinSampleSplit-25
29,F1Score,0.8641304347826086,MinSampleSplit-25
30,Accuracy,0.9698492462311558,MinSampleSplit-50
31,F1Score,0.8833333333333334,MinSampleSplit-50
32,Accuracy,0.9447236180904522,MinSampleSplit-100
33,F1Score,0.8050632911392405,MinSampleSplit-100
34,Accuracy,0.9468772433596554,MinSampleSplit-250
35,F1Score,0.815,MinSampleSplit-250
36,Accuracy,0.964824120603015,MinSampleSplit-2
37,F1Score,0.8693333333333333,MinSampleSplit-2
38,Accuracy,0.9669777458722182,MinSampleSplit-10
39,F1Score,0.8756756756756757,MinSampleSplit-10
40,Accuracy,0.9641062455132807,MinSampleSplit-25
41,F1Score,0.8641304347826086,MinSampleSplit-25
42,Accuracy,0.9633883704235463,MinSampleSplit-50
43,F1Score,0.859504132231405,MinSampleSplit-50
44,Accuracy,0.9504666188083274,MinSampleSplit-100
45,F1Score,0.823529411764706,MinSampleSplit-100
46,Accuracy,0.9504666188083274,MinSampleSplit-250
47,F1Score,0.8253164556962025,MinSampleSplit-250
48,Accuracy,0.9641062455132807,MinSampleSplit-2
49,F1Score,0.8648648648648649,MinSampleSplit-2
50,Accuracy,0.9676956209619526,MinSampleSplit-10
51,F1Score,0.8787061994609164,MinSampleSplit-10
52,Accuracy,0.9662598707824839,MinSampleSplit-25
53,F1Score,0.8705234159779616,MinSampleSplit-25
54,Accuracy,0.9662598707824839,MinSampleSplit-50
55,F1Score,0.8698060941828255,MinSampleSplit-50
56,Accuracy,0.9504666188083274,MinSampleSplit-100
57,F1Score,0.823529411764706,MinSampleSplit-100
58,Accuracy,0.949748743718593,MinSampleSplit-250
59,F1Score,0.8258706467661691,MinSampleSplit-250
60,Accuracy,0.9641062455132807,MinSampleSplit-2
61,F1Score,0.8655913978494624,MinSampleSplit-2
62,Accuracy,0.9676956209619526,MinSampleSplit-10
63,F1Score,0.88,MinSampleSplit-10
64,Accuracy,0.9619526202440776,MinSampleSplit-25
65,F1Score,0.8547945205479452,MinSampleSplit-25
66,Accuracy,0.9655419956927495,MinSampleSplit-50
67,F1Score,0.8702702702702703,MinSampleSplit-50
68,Accuracy,0.9475951184493898,MinSampleSplit-100
69,F1Score,0.8170426065162908,MinSampleSplit-100
70,Accuracy,0.9526202440775305,MinSampleSplit-250
71,F1Score,0.8341708542713568,MinSampleSplit-250
72,Accuracy,0.9641062455132807,MinSampleSplit-2
73,F1Score,0.8663101604278075,MinSampleSplit-2
74,Accuracy,0.9633883704235463,MinSampleSplit-10
75,F1Score,0.8640000000000001,MinSampleSplit-10
76,Accuracy,0.9655419956927495,MinSampleSplit-25
77,F1Score,0.8681318681318682,MinSampleSplit-25
78,Accuracy,0.9691313711414213,MinSampleSplit-50
79,F1Score,0.8808864265927977,MinSampleSplit-50
80,Accuracy,0.9504666188083274,MinSampleSplit-100
81,F1Score,0.8244274809160306,MinSampleSplit-100
82,Accuracy,0.9511844938980617,MinSampleSplit-250
83,F1Score,0.8282828282828284,MinSampleSplit-250
84,Accuracy,0.9669777458722182,MinSampleSplit-2
85,F1Score,0.8783068783068783,MinSampleSplit-2
86,Accuracy,0.964824120603015,MinSampleSplit-10
87,F1Score,0.8679245283018868,MinSampleSplit-10
88,Accuracy,0.9641062455132807,MinSampleSplit-25
89,F1Score,0.861878453038674,MinSampleSplit-25
90,Accuracy,0.9626704953338119,MinSampleSplit-50
91,F1Score,0.8579234972677595,MinSampleSplit-50
92,Accuracy,0.9468772433596554,MinSampleSplit-100
93,F1Score,0.809278350515464,MinSampleSplit-100
94,Accuracy,0.9504666188083274,MinSampleSplit-250
95,F1Score,0.8261964735516373,MinSampleSplit-250
96,Accuracy,0.9662598707824839,MinSampleSplit-2
97,F1Score,0.873994638069705,MinSampleSplit-2
98,Accuracy,0.9597989949748744,MinSampleSplit-10
99,F1Score,0.851851851851852,MinSampleSplit-10
100,Accuracy,0.964824120603015,MinSampleSplit-25
101,F1Score,0.8664850136239781,MinSampleSplit-25
102,Accuracy,0.968413496051687,MinSampleSplit-50
103,F1Score,0.8777777777777779,MinSampleSplit-50
104,Accuracy,0.9490308686288585,MinSampleSplit-100
105,F1Score,0.8174807197943444,MinSampleSplit-100
106,Accuracy,0.9526202440775305,MinSampleSplit-250
107,F1Score,0.8333333333333334,MinSampleSplit-250
108,Accuracy,0.9612347451543432,MinSampleSplit-2
109,F1Score,0.8563829787234043,MinSampleSplit-2
110,Accuracy,0.9633883704235463,MinSampleSplit-10
111,F1Score,0.8610354223433242,MinSampleSplit-10
112,Accuracy,0.9612347451543432,MinSampleSplit-25
113,F1Score,0.8532608695652173,MinSampleSplit-25
114,Accuracy,0.9698492462311558,MinSampleSplit-50
115,F1Score,0.8833333333333334,MinSampleSplit-50
116,Accuracy,0.9475951184493898,MinSampleSplit-100
117,F1Score,0.8132992327365729,MinSampleSplit-100
118,Accuracy,0.9511844938980617,MinSampleSplit-250
119,F1Score,0.8274111675126904,MinSampleSplit-250
120,Accuracy,0.9626704953338119,MinSampleSplit-2
121,F1Score,0.8624338624338624,MinSampleSplit-2
122,Accuracy,0.9626704953338119,MinSampleSplit-10
123,F1Score,0.860215053763441,MinSampleSplit-10
124,Accuracy,0.9619526202440776,MinSampleSplit-25
125,F1Score,0.8531855955678671,MinSampleSplit-25
126,Accuracy,0.9669777458722182,MinSampleSplit-50
127,F1Score,0.87292817679558,MinSampleSplit-50
128,Accuracy,0.9490308686288585,MinSampleSplit-100
129,F1Score,0.8193384223918574,MinSampleSplit-100
130,Accuracy,0.9504666188083274,MinSampleSplit-250
131,F1Score,0.8270676691729324,MinSampleSplit-250
132,Accuracy,0.9619526202440776,MinSampleSplit-2
133,F1Score,0.8616187989556137,MinSampleSplit-2
134,Accuracy,0.9662598707824839,MinSampleSplit-10
135,F1Score,0.8733153638814016,MinSampleSplit-10
136,Accuracy,0.9662598707824839,MinSampleSplit-25
137,F1Score,0.8712328767123287,MinSampleSplit-25
138,Accuracy,0.9705671213208902,MinSampleSplit-50
139,F1Score,0.8857938718662953,MinSampleSplit-50
140,Accuracy,0.9504666188083274,MinSampleSplit-100
141,F1Score,0.8244274809160306,MinSampleSplit-100
142,Accuracy,0.9519023689877961,MinSampleSplit-250
143,F1Score,0.830379746835443,MinSampleSplit-250
144,Accuracy,0.9655419956927495,MinSampleSplit-2
145,F1Score,0.8716577540106951,MinSampleSplit-2
146,Accuracy,0.9655419956927495,MinSampleSplit-10
147,F1Score,0.8688524590163934,MinSampleSplit-10
148,Accuracy,0.9641062455132807,MinSampleSplit-25
149,F1Score,0.8633879781420766,MinSampleSplit-25
150,Accuracy,0.9655419956927495,MinSampleSplit-50
151,F1Score,0.8688524590163934,MinSampleSplit-50
152,Accuracy,0.9490308686288585,MinSampleSplit-100
153,F1Score,0.8174807197943444,MinSampleSplit-100
154,Accuracy,0.9461593682699211,MinSampleSplit-250
155,F1Score,0.8129675810473816,MinSampleSplit-250
156,Accuracy,0.9626704953338119,MinSampleSplit-2
157,F1Score,0.860215053763441,MinSampleSplit-2
158,Accuracy,0.9619526202440776,MinSampleSplit-10
159,F1Score,0.8586666666666666,MinSampleSplit-10
160,Accuracy,0.9619526202440776,MinSampleSplit-25
161,F1Score,0.8579088471849866,MinSampleSplit-25
162,Accuracy,0.9662598707824839,MinSampleSplit-50
163,F1Score,0.8690807799442897,MinSampleSplit-50
164,Accuracy,0.9483129935391242,MinSampleSplit-100
165,F1Score,0.8144329896907216,MinSampleSplit-100
166,Accuracy,0.9526202440775305,MinSampleSplit-250
167,F1Score,0.8333333333333334,MinSampleSplit-250
168,Accuracy,0.9641062455132807,MinSampleSplit-2
169,F1Score,0.8633879781420766,MinSampleSplit-2
170,Accuracy,0.9619526202440776,MinSampleSplit-10
171,F1Score,0.8555858310626703,MinSampleSplit-10
172,Accuracy,0.9619526202440776,MinSampleSplit-25
173,F1Score,0.8531855955678671,MinSampleSplit-25
174,Accuracy,0.9662598707824839,MinSampleSplit-50
175,F1Score,0.872628726287263,MinSampleSplit-50
176,Accuracy,0.949748743718593,MinSampleSplit-100
177,F1Score,0.8205128205128206,MinSampleSplit-100
178,Accuracy,0.949748743718593,MinSampleSplit-250
179,F1Score,0.8232323232323233,MinSampleSplit-250
180,Accuracy,0.9655419956927495,MinSampleSplit-2
181,F1Score,0.8709677419354839,MinSampleSplit-2
182,Accuracy,0.9655419956927495,MinSampleSplit-10
183,F1Score,0.8695652173913042,MinSampleSplit-10
184,Accuracy,0.9655419956927495,MinSampleSplit-25
185,F1Score,0.8666666666666667,MinSampleSplit-25
186,Accuracy,0.964824120603015,MinSampleSplit-50
187,F1Score,0.8657534246575342,MinSampleSplit-50
188,Accuracy,0.9490308686288585,MinSampleSplit-100
189,F1Score,0.8184143222506394,MinSampleSplit-100
190,Accuracy,0.9454414931801867,MinSampleSplit-250
191,F1Score,0.8109452736318408,MinSampleSplit-250
192,Accuracy,0.9676956209619526,MinSampleSplit-2
193,F1Score,0.8780487804878049,MinSampleSplit-2
194,Accuracy,0.968413496051687,MinSampleSplit-10
195,F1Score,0.8804347826086957,MinSampleSplit-10
196,Accuracy,0.9655419956927495,MinSampleSplit-25
197,F1Score,0.8681318681318682,MinSampleSplit-25
198,Accuracy,0.968413496051687,MinSampleSplit-50
199,F1Score,0.8784530386740332,MinSampleSplit-50
200,Accuracy,0.9475951184493898,MinSampleSplit-100
201,F1Score,0.8123393316195374,MinSampleSplit-100
202,Accuracy,0.9447236180904522,MinSampleSplit-250
203,F1Score,0.8098765432098766,MinSampleSplit-250
204,Accuracy,0.9619526202440776,MinSampleSplit-2
205,F1Score,0.8586666666666666,MinSampleSplit-2
206,Accuracy,0.9655419956927495,MinSampleSplit-10
207,F1Score,0.8702702702702703,MinSampleSplit-10
208,Accuracy,0.9612347451543432,MinSampleSplit-25
209,F1Score,0.8524590163934427,MinSampleSplit-25
210,Accuracy,0.9676956209619526,MinSampleSplit-50
211,F1Score,0.8746518105849582,MinSampleSplit-50
212,Accuracy,0.9504666188083274,MinSampleSplit-100
213,F1Score,0.823529411764706,MinSampleSplit-100
214,Accuracy,0.9519023689877961,MinSampleSplit-250
215,F1Score,0.8312342569269521,MinSampleSplit-250
216,Accuracy,0.9655419956927495,MinSampleSplit-2
217,F1Score,0.8716577540106951,MinSampleSplit-2
218,Accuracy,0.9676956209619526,MinSampleSplit-10
219,F1Score,0.88,MinSampleSplit-10
220,Accuracy,0.9641062455132807,MinSampleSplit-25
221,F1Score,0.8626373626373626,MinSampleSplit-25
222,Accuracy,0.9698492462311558,MinSampleSplit-50
223,F1Score,0.8833333333333334,MinSampleSplit-50
224,Accuracy,0.9490308686288585,MinSampleSplit-100
225,F1Score,0.8184143222506394,MinSampleSplit-100
226,Accuracy,0.9454414931801867,MinSampleSplit-250
227,F1Score,0.8099999999999999,MinSampleSplit-250
228,Accuracy,0.964824120603015,MinSampleSplit-2
229,F1Score,0.8679245283018868,MinSampleSplit-2
230,Accuracy,0.9641062455132807,MinSampleSplit-10
231,F1Score,0.8677248677248677,MinSampleSplit-10
232,Accuracy,0.9669777458722182,MinSampleSplit-25
233,F1Score,0.8736263736263735,MinSampleSplit-25
234,Accuracy,0.964824120603015,MinSampleSplit-50
235,F1Score,0.8650137741046833,MinSampleSplit-50
236,Accuracy,0.9504666188083274,MinSampleSplit-100
237,F1Score,0.8226221079691517,MinSampleSplit-100
238,Accuracy,0.9475951184493898,MinSampleSplit-250
239,F1Score,0.8142493638676845,MinSampleSplit-250
1 Measure Value MinSampleSplit
2 0 Accuracy 0.9633883704235463 MinSampleSplit-2
3 1 F1Score 0.8625336927223719 MinSampleSplit-2
4 2 Accuracy 0.9669777458722182 MinSampleSplit-10
5 3 F1Score 0.8763440860215054 MinSampleSplit-10
6 4 Accuracy 0.9655419956927495 MinSampleSplit-25
7 5 F1Score 0.8688524590163934 MinSampleSplit-25
8 6 Accuracy 0.9669777458722182 MinSampleSplit-50
9 7 F1Score 0.8722222222222223 MinSampleSplit-50
10 8 Accuracy 0.9519023689877961 MinSampleSplit-100
11 9 F1Score 0.8295165394402035 MinSampleSplit-100
12 10 Accuracy 0.9483129935391242 MinSampleSplit-250
13 11 F1Score 0.8181818181818182 MinSampleSplit-250
14 12 Accuracy 0.9655419956927495 MinSampleSplit-2
15 13 F1Score 0.8723404255319149 MinSampleSplit-2
16 14 Accuracy 0.9641062455132807 MinSampleSplit-10
17 15 F1Score 0.8677248677248677 MinSampleSplit-10
18 16 Accuracy 0.9655419956927495 MinSampleSplit-25
19 17 F1Score 0.8666666666666667 MinSampleSplit-25
20 18 Accuracy 0.964824120603015 MinSampleSplit-50
21 19 F1Score 0.8664850136239781 MinSampleSplit-50
22 20 Accuracy 0.9454414931801867 MinSampleSplit-100
23 21 F1Score 0.8080808080808082 MinSampleSplit-100
24 22 Accuracy 0.9504666188083274 MinSampleSplit-250
25 23 F1Score 0.8244274809160306 MinSampleSplit-250
26 24 Accuracy 0.95908111988514 MinSampleSplit-2
27 25 F1Score 0.8503937007874017 MinSampleSplit-2
28 26 Accuracy 0.9676956209619526 MinSampleSplit-10
29 27 F1Score 0.8787061994609164 MinSampleSplit-10
30 28 Accuracy 0.9641062455132807 MinSampleSplit-25
31 29 F1Score 0.8641304347826086 MinSampleSplit-25
32 30 Accuracy 0.9698492462311558 MinSampleSplit-50
33 31 F1Score 0.8833333333333334 MinSampleSplit-50
34 32 Accuracy 0.9447236180904522 MinSampleSplit-100
35 33 F1Score 0.8050632911392405 MinSampleSplit-100
36 34 Accuracy 0.9468772433596554 MinSampleSplit-250
37 35 F1Score 0.815 MinSampleSplit-250
38 36 Accuracy 0.964824120603015 MinSampleSplit-2
39 37 F1Score 0.8693333333333333 MinSampleSplit-2
40 38 Accuracy 0.9669777458722182 MinSampleSplit-10
41 39 F1Score 0.8756756756756757 MinSampleSplit-10
42 40 Accuracy 0.9641062455132807 MinSampleSplit-25
43 41 F1Score 0.8641304347826086 MinSampleSplit-25
44 42 Accuracy 0.9633883704235463 MinSampleSplit-50
45 43 F1Score 0.859504132231405 MinSampleSplit-50
46 44 Accuracy 0.9504666188083274 MinSampleSplit-100
47 45 F1Score 0.823529411764706 MinSampleSplit-100
48 46 Accuracy 0.9504666188083274 MinSampleSplit-250
49 47 F1Score 0.8253164556962025 MinSampleSplit-250
50 48 Accuracy 0.9641062455132807 MinSampleSplit-2
51 49 F1Score 0.8648648648648649 MinSampleSplit-2
52 50 Accuracy 0.9676956209619526 MinSampleSplit-10
53 51 F1Score 0.8787061994609164 MinSampleSplit-10
54 52 Accuracy 0.9662598707824839 MinSampleSplit-25
55 53 F1Score 0.8705234159779616 MinSampleSplit-25
56 54 Accuracy 0.9662598707824839 MinSampleSplit-50
57 55 F1Score 0.8698060941828255 MinSampleSplit-50
58 56 Accuracy 0.9504666188083274 MinSampleSplit-100
59 57 F1Score 0.823529411764706 MinSampleSplit-100
60 58 Accuracy 0.949748743718593 MinSampleSplit-250
61 59 F1Score 0.8258706467661691 MinSampleSplit-250
62 60 Accuracy 0.9641062455132807 MinSampleSplit-2
63 61 F1Score 0.8655913978494624 MinSampleSplit-2
64 62 Accuracy 0.9676956209619526 MinSampleSplit-10
65 63 F1Score 0.88 MinSampleSplit-10
66 64 Accuracy 0.9619526202440776 MinSampleSplit-25
67 65 F1Score 0.8547945205479452 MinSampleSplit-25
68 66 Accuracy 0.9655419956927495 MinSampleSplit-50
69 67 F1Score 0.8702702702702703 MinSampleSplit-50
70 68 Accuracy 0.9475951184493898 MinSampleSplit-100
71 69 F1Score 0.8170426065162908 MinSampleSplit-100
72 70 Accuracy 0.9526202440775305 MinSampleSplit-250
73 71 F1Score 0.8341708542713568 MinSampleSplit-250
74 72 Accuracy 0.9641062455132807 MinSampleSplit-2
75 73 F1Score 0.8663101604278075 MinSampleSplit-2
76 74 Accuracy 0.9633883704235463 MinSampleSplit-10
77 75 F1Score 0.8640000000000001 MinSampleSplit-10
78 76 Accuracy 0.9655419956927495 MinSampleSplit-25
79 77 F1Score 0.8681318681318682 MinSampleSplit-25
80 78 Accuracy 0.9691313711414213 MinSampleSplit-50
81 79 F1Score 0.8808864265927977 MinSampleSplit-50
82 80 Accuracy 0.9504666188083274 MinSampleSplit-100
83 81 F1Score 0.8244274809160306 MinSampleSplit-100
84 82 Accuracy 0.9511844938980617 MinSampleSplit-250
85 83 F1Score 0.8282828282828284 MinSampleSplit-250
86 84 Accuracy 0.9669777458722182 MinSampleSplit-2
87 85 F1Score 0.8783068783068783 MinSampleSplit-2
88 86 Accuracy 0.964824120603015 MinSampleSplit-10
89 87 F1Score 0.8679245283018868 MinSampleSplit-10
90 88 Accuracy 0.9641062455132807 MinSampleSplit-25
91 89 F1Score 0.861878453038674 MinSampleSplit-25
92 90 Accuracy 0.9626704953338119 MinSampleSplit-50
93 91 F1Score 0.8579234972677595 MinSampleSplit-50
94 92 Accuracy 0.9468772433596554 MinSampleSplit-100
95 93 F1Score 0.809278350515464 MinSampleSplit-100
96 94 Accuracy 0.9504666188083274 MinSampleSplit-250
97 95 F1Score 0.8261964735516373 MinSampleSplit-250
98 96 Accuracy 0.9662598707824839 MinSampleSplit-2
99 97 F1Score 0.873994638069705 MinSampleSplit-2
100 98 Accuracy 0.9597989949748744 MinSampleSplit-10
101 99 F1Score 0.851851851851852 MinSampleSplit-10
102 100 Accuracy 0.964824120603015 MinSampleSplit-25
103 101 F1Score 0.8664850136239781 MinSampleSplit-25
104 102 Accuracy 0.968413496051687 MinSampleSplit-50
105 103 F1Score 0.8777777777777779 MinSampleSplit-50
106 104 Accuracy 0.9490308686288585 MinSampleSplit-100
107 105 F1Score 0.8174807197943444 MinSampleSplit-100
108 106 Accuracy 0.9526202440775305 MinSampleSplit-250
109 107 F1Score 0.8333333333333334 MinSampleSplit-250
110 108 Accuracy 0.9612347451543432 MinSampleSplit-2
111 109 F1Score 0.8563829787234043 MinSampleSplit-2
112 110 Accuracy 0.9633883704235463 MinSampleSplit-10
113 111 F1Score 0.8610354223433242 MinSampleSplit-10
114 112 Accuracy 0.9612347451543432 MinSampleSplit-25
115 113 F1Score 0.8532608695652173 MinSampleSplit-25
116 114 Accuracy 0.9698492462311558 MinSampleSplit-50
117 115 F1Score 0.8833333333333334 MinSampleSplit-50
118 116 Accuracy 0.9475951184493898 MinSampleSplit-100
119 117 F1Score 0.8132992327365729 MinSampleSplit-100
120 118 Accuracy 0.9511844938980617 MinSampleSplit-250
121 119 F1Score 0.8274111675126904 MinSampleSplit-250
122 120 Accuracy 0.9626704953338119 MinSampleSplit-2
123 121 F1Score 0.8624338624338624 MinSampleSplit-2
124 122 Accuracy 0.9626704953338119 MinSampleSplit-10
125 123 F1Score 0.860215053763441 MinSampleSplit-10
126 124 Accuracy 0.9619526202440776 MinSampleSplit-25
127 125 F1Score 0.8531855955678671 MinSampleSplit-25
128 126 Accuracy 0.9669777458722182 MinSampleSplit-50
129 127 F1Score 0.87292817679558 MinSampleSplit-50
130 128 Accuracy 0.9490308686288585 MinSampleSplit-100
131 129 F1Score 0.8193384223918574 MinSampleSplit-100
132 130 Accuracy 0.9504666188083274 MinSampleSplit-250
133 131 F1Score 0.8270676691729324 MinSampleSplit-250
134 132 Accuracy 0.9619526202440776 MinSampleSplit-2
135 133 F1Score 0.8616187989556137 MinSampleSplit-2
136 134 Accuracy 0.9662598707824839 MinSampleSplit-10
137 135 F1Score 0.8733153638814016 MinSampleSplit-10
138 136 Accuracy 0.9662598707824839 MinSampleSplit-25
139 137 F1Score 0.8712328767123287 MinSampleSplit-25
140 138 Accuracy 0.9705671213208902 MinSampleSplit-50
141 139 F1Score 0.8857938718662953 MinSampleSplit-50
142 140 Accuracy 0.9504666188083274 MinSampleSplit-100
143 141 F1Score 0.8244274809160306 MinSampleSplit-100
144 142 Accuracy 0.9519023689877961 MinSampleSplit-250
145 143 F1Score 0.830379746835443 MinSampleSplit-250
146 144 Accuracy 0.9655419956927495 MinSampleSplit-2
147 145 F1Score 0.8716577540106951 MinSampleSplit-2
148 146 Accuracy 0.9655419956927495 MinSampleSplit-10
149 147 F1Score 0.8688524590163934 MinSampleSplit-10
150 148 Accuracy 0.9641062455132807 MinSampleSplit-25
151 149 F1Score 0.8633879781420766 MinSampleSplit-25
152 150 Accuracy 0.9655419956927495 MinSampleSplit-50
153 151 F1Score 0.8688524590163934 MinSampleSplit-50
154 152 Accuracy 0.9490308686288585 MinSampleSplit-100
155 153 F1Score 0.8174807197943444 MinSampleSplit-100
156 154 Accuracy 0.9461593682699211 MinSampleSplit-250
157 155 F1Score 0.8129675810473816 MinSampleSplit-250
158 156 Accuracy 0.9626704953338119 MinSampleSplit-2
159 157 F1Score 0.860215053763441 MinSampleSplit-2
160 158 Accuracy 0.9619526202440776 MinSampleSplit-10
161 159 F1Score 0.8586666666666666 MinSampleSplit-10
162 160 Accuracy 0.9619526202440776 MinSampleSplit-25
163 161 F1Score 0.8579088471849866 MinSampleSplit-25
164 162 Accuracy 0.9662598707824839 MinSampleSplit-50
165 163 F1Score 0.8690807799442897 MinSampleSplit-50
166 164 Accuracy 0.9483129935391242 MinSampleSplit-100
167 165 F1Score 0.8144329896907216 MinSampleSplit-100
168 166 Accuracy 0.9526202440775305 MinSampleSplit-250
169 167 F1Score 0.8333333333333334 MinSampleSplit-250
170 168 Accuracy 0.9641062455132807 MinSampleSplit-2
171 169 F1Score 0.8633879781420766 MinSampleSplit-2
172 170 Accuracy 0.9619526202440776 MinSampleSplit-10
173 171 F1Score 0.8555858310626703 MinSampleSplit-10
174 172 Accuracy 0.9619526202440776 MinSampleSplit-25
175 173 F1Score 0.8531855955678671 MinSampleSplit-25
176 174 Accuracy 0.9662598707824839 MinSampleSplit-50
177 175 F1Score 0.872628726287263 MinSampleSplit-50
178 176 Accuracy 0.949748743718593 MinSampleSplit-100
179 177 F1Score 0.8205128205128206 MinSampleSplit-100
180 178 Accuracy 0.949748743718593 MinSampleSplit-250
181 179 F1Score 0.8232323232323233 MinSampleSplit-250
182 180 Accuracy 0.9655419956927495 MinSampleSplit-2
183 181 F1Score 0.8709677419354839 MinSampleSplit-2
184 182 Accuracy 0.9655419956927495 MinSampleSplit-10
185 183 F1Score 0.8695652173913042 MinSampleSplit-10
186 184 Accuracy 0.9655419956927495 MinSampleSplit-25
187 185 F1Score 0.8666666666666667 MinSampleSplit-25
188 186 Accuracy 0.964824120603015 MinSampleSplit-50
189 187 F1Score 0.8657534246575342 MinSampleSplit-50
190 188 Accuracy 0.9490308686288585 MinSampleSplit-100
191 189 F1Score 0.8184143222506394 MinSampleSplit-100
192 190 Accuracy 0.9454414931801867 MinSampleSplit-250
193 191 F1Score 0.8109452736318408 MinSampleSplit-250
194 192 Accuracy 0.9676956209619526 MinSampleSplit-2
195 193 F1Score 0.8780487804878049 MinSampleSplit-2
196 194 Accuracy 0.968413496051687 MinSampleSplit-10
197 195 F1Score 0.8804347826086957 MinSampleSplit-10
198 196 Accuracy 0.9655419956927495 MinSampleSplit-25
199 197 F1Score 0.8681318681318682 MinSampleSplit-25
200 198 Accuracy 0.968413496051687 MinSampleSplit-50
201 199 F1Score 0.8784530386740332 MinSampleSplit-50
202 200 Accuracy 0.9475951184493898 MinSampleSplit-100
203 201 F1Score 0.8123393316195374 MinSampleSplit-100
204 202 Accuracy 0.9447236180904522 MinSampleSplit-250
205 203 F1Score 0.8098765432098766 MinSampleSplit-250
206 204 Accuracy 0.9619526202440776 MinSampleSplit-2
207 205 F1Score 0.8586666666666666 MinSampleSplit-2
208 206 Accuracy 0.9655419956927495 MinSampleSplit-10
209 207 F1Score 0.8702702702702703 MinSampleSplit-10
210 208 Accuracy 0.9612347451543432 MinSampleSplit-25
211 209 F1Score 0.8524590163934427 MinSampleSplit-25
212 210 Accuracy 0.9676956209619526 MinSampleSplit-50
213 211 F1Score 0.8746518105849582 MinSampleSplit-50
214 212 Accuracy 0.9504666188083274 MinSampleSplit-100
215 213 F1Score 0.823529411764706 MinSampleSplit-100
216 214 Accuracy 0.9519023689877961 MinSampleSplit-250
217 215 F1Score 0.8312342569269521 MinSampleSplit-250
218 216 Accuracy 0.9655419956927495 MinSampleSplit-2
219 217 F1Score 0.8716577540106951 MinSampleSplit-2
220 218 Accuracy 0.9676956209619526 MinSampleSplit-10
221 219 F1Score 0.88 MinSampleSplit-10
222 220 Accuracy 0.9641062455132807 MinSampleSplit-25
223 221 F1Score 0.8626373626373626 MinSampleSplit-25
224 222 Accuracy 0.9698492462311558 MinSampleSplit-50
225 223 F1Score 0.8833333333333334 MinSampleSplit-50
226 224 Accuracy 0.9490308686288585 MinSampleSplit-100
227 225 F1Score 0.8184143222506394 MinSampleSplit-100
228 226 Accuracy 0.9454414931801867 MinSampleSplit-250
229 227 F1Score 0.8099999999999999 MinSampleSplit-250
230 228 Accuracy 0.964824120603015 MinSampleSplit-2
231 229 F1Score 0.8679245283018868 MinSampleSplit-2
232 230 Accuracy 0.9641062455132807 MinSampleSplit-10
233 231 F1Score 0.8677248677248677 MinSampleSplit-10
234 232 Accuracy 0.9669777458722182 MinSampleSplit-25
235 233 F1Score 0.8736263736263735 MinSampleSplit-25
236 234 Accuracy 0.964824120603015 MinSampleSplit-50
237 235 F1Score 0.8650137741046833 MinSampleSplit-50
238 236 Accuracy 0.9504666188083274 MinSampleSplit-100
239 237 F1Score 0.8226221079691517 MinSampleSplit-100
240 238 Accuracy 0.9475951184493898 MinSampleSplit-250
241 239 F1Score 0.8142493638676845 MinSampleSplit-250

161
results/experimentOne.csv Normal file
View File

@ -0,0 +1,161 @@
,Measure,Value,Method
0,Precision,0.8702702702702703,Decision Tree
1,Recall,0.8702702702702703,Decision Tree
2,Accuracy,0.9655419956927495,Decision Tree
3,F1Score,0.8702702702702703,Decision Tree
4,Precision,0.9941176470588236,Logistic Regression
5,Recall,0.9135135135135135,Logistic Regression
6,Accuracy,0.9877961234745154,Logistic Regression
7,F1Score,0.9521126760563381,Logistic Regression
8,Precision,1.0,Neural Network
9,Recall,0.9459459459459459,Neural Network
10,Accuracy,0.9928212491026561,Neural Network
11,F1Score,0.9722222222222222,Neural Network
12,Precision,0.9720670391061452,Naive Bayesian
13,Recall,0.9405405405405406,Naive Bayesian
14,Accuracy,0.9885139985642498,Naive Bayesian
15,F1Score,0.9560439560439562,Naive Bayesian
16,Precision,0.8375634517766497,Decision Tree
17,Recall,0.8918918918918919,Decision Tree
18,Accuracy,0.9626704953338119,Decision Tree
19,F1Score,0.8638743455497383,Decision Tree
20,Precision,0.9941176470588236,Logistic Regression
21,Recall,0.9135135135135135,Logistic Regression
22,Accuracy,0.9877961234745154,Logistic Regression
23,F1Score,0.9521126760563381,Logistic Regression
24,Precision,1.0,Neural Network
25,Recall,0.9351351351351351,Neural Network
26,Accuracy,0.9913854989231874,Neural Network
27,F1Score,0.9664804469273743,Neural Network
28,Precision,0.9720670391061452,Naive Bayesian
29,Recall,0.9405405405405406,Naive Bayesian
30,Accuracy,0.9885139985642498,Naive Bayesian
31,F1Score,0.9560439560439562,Naive Bayesian
32,Precision,0.8702702702702703,Decision Tree
33,Recall,0.8702702702702703,Decision Tree
34,Accuracy,0.9655419956927495,Decision Tree
35,F1Score,0.8702702702702703,Decision Tree
36,Precision,0.9941176470588236,Logistic Regression
37,Recall,0.9135135135135135,Logistic Regression
38,Accuracy,0.9877961234745154,Logistic Regression
39,F1Score,0.9521126760563381,Logistic Regression
40,Precision,1.0,Neural Network
41,Recall,0.9351351351351351,Neural Network
42,Accuracy,0.9913854989231874,Neural Network
43,F1Score,0.9664804469273743,Neural Network
44,Precision,0.9720670391061452,Naive Bayesian
45,Recall,0.9405405405405406,Naive Bayesian
46,Accuracy,0.9885139985642498,Naive Bayesian
47,F1Score,0.9560439560439562,Naive Bayesian
48,Precision,0.8797814207650273,Decision Tree
49,Recall,0.8702702702702703,Decision Tree
50,Accuracy,0.9669777458722182,Decision Tree
51,F1Score,0.875,Decision Tree
52,Precision,0.9941176470588236,Logistic Regression
53,Recall,0.9135135135135135,Logistic Regression
54,Accuracy,0.9877961234745154,Logistic Regression
55,F1Score,0.9521126760563381,Logistic Regression
56,Precision,0.988950276243094,Neural Network
57,Recall,0.9675675675675676,Neural Network
58,Accuracy,0.994256999282125,Neural Network
59,F1Score,0.9781420765027322,Neural Network
60,Precision,0.9720670391061452,Naive Bayesian
61,Recall,0.9405405405405406,Naive Bayesian
62,Accuracy,0.9885139985642498,Naive Bayesian
63,F1Score,0.9560439560439562,Naive Bayesian
64,Precision,0.8757062146892656,Decision Tree
65,Recall,0.8378378378378378,Decision Tree
66,Accuracy,0.9626704953338119,Decision Tree
67,F1Score,0.856353591160221,Decision Tree
68,Precision,0.9941176470588236,Logistic Regression
69,Recall,0.9135135135135135,Logistic Regression
70,Accuracy,0.9877961234745154,Logistic Regression
71,F1Score,0.9521126760563381,Logistic Regression
72,Precision,1.0,Neural Network
73,Recall,0.9351351351351351,Neural Network
74,Accuracy,0.9913854989231874,Neural Network
75,F1Score,0.9664804469273743,Neural Network
76,Precision,0.9720670391061452,Naive Bayesian
77,Recall,0.9405405405405406,Naive Bayesian
78,Accuracy,0.9885139985642498,Naive Bayesian
79,F1Score,0.9560439560439562,Naive Bayesian
80,Precision,0.8481675392670157,Decision Tree
81,Recall,0.8756756756756757,Decision Tree
82,Accuracy,0.9626704953338119,Decision Tree
83,F1Score,0.8617021276595744,Decision Tree
84,Precision,0.9941176470588236,Logistic Regression
85,Recall,0.9135135135135135,Logistic Regression
86,Accuracy,0.9877961234745154,Logistic Regression
87,F1Score,0.9521126760563381,Logistic Regression
88,Precision,1.0,Neural Network
89,Recall,0.9351351351351351,Neural Network
90,Accuracy,0.9913854989231874,Neural Network
91,F1Score,0.9664804469273743,Neural Network
92,Precision,0.9720670391061452,Naive Bayesian
93,Recall,0.9405405405405406,Naive Bayesian
94,Accuracy,0.9885139985642498,Naive Bayesian
95,F1Score,0.9560439560439562,Naive Bayesian
96,Precision,0.8663101604278075,Decision Tree
97,Recall,0.8756756756756757,Decision Tree
98,Accuracy,0.9655419956927495,Decision Tree
99,F1Score,0.8709677419354839,Decision Tree
100,Precision,0.9941176470588236,Logistic Regression
101,Recall,0.9135135135135135,Logistic Regression
102,Accuracy,0.9877961234745154,Logistic Regression
103,F1Score,0.9521126760563381,Logistic Regression
104,Precision,1.0,Neural Network
105,Recall,0.9297297297297298,Neural Network
106,Accuracy,0.990667623833453,Neural Network
107,F1Score,0.9635854341736695,Neural Network
108,Precision,0.9720670391061452,Naive Bayesian
109,Recall,0.9405405405405406,Naive Bayesian
110,Accuracy,0.9885139985642498,Naive Bayesian
111,F1Score,0.9560439560439562,Naive Bayesian
112,Precision,0.8333333333333334,Decision Tree
113,Recall,0.8918918918918919,Decision Tree
114,Accuracy,0.9619526202440776,Decision Tree
115,F1Score,0.8616187989556137,Decision Tree
116,Precision,0.9941176470588236,Logistic Regression
117,Recall,0.9135135135135135,Logistic Regression
118,Accuracy,0.9877961234745154,Logistic Regression
119,F1Score,0.9521126760563381,Logistic Regression
120,Precision,1.0,Neural Network
121,Recall,0.9297297297297298,Neural Network
122,Accuracy,0.990667623833453,Neural Network
123,F1Score,0.9635854341736695,Neural Network
124,Precision,0.9720670391061452,Naive Bayesian
125,Recall,0.9405405405405406,Naive Bayesian
126,Accuracy,0.9885139985642498,Naive Bayesian
127,F1Score,0.9560439560439562,Naive Bayesian
128,Precision,0.8617021276595744,Decision Tree
129,Recall,0.8756756756756757,Decision Tree
130,Accuracy,0.964824120603015,Decision Tree
131,F1Score,0.8686327077747988,Decision Tree
132,Precision,0.9941176470588236,Logistic Regression
133,Recall,0.9135135135135135,Logistic Regression
134,Accuracy,0.9877961234745154,Logistic Regression
135,F1Score,0.9521126760563381,Logistic Regression
136,Precision,1.0,Neural Network
137,Recall,0.9243243243243243,Neural Network
138,Accuracy,0.9899497487437185,Neural Network
139,F1Score,0.9606741573033708,Neural Network
140,Precision,0.9720670391061452,Naive Bayesian
141,Recall,0.9405405405405406,Naive Bayesian
142,Accuracy,0.9885139985642498,Naive Bayesian
143,F1Score,0.9560439560439562,Naive Bayesian
144,Precision,0.8901098901098901,Decision Tree
145,Recall,0.8756756756756757,Decision Tree
146,Accuracy,0.9691313711414213,Decision Tree
147,F1Score,0.8828337874659401,Decision Tree
148,Precision,0.9941176470588236,Logistic Regression
149,Recall,0.9135135135135135,Logistic Regression
150,Accuracy,0.9877961234745154,Logistic Regression
151,F1Score,0.9521126760563381,Logistic Regression
152,Precision,1.0,Neural Network
153,Recall,0.9297297297297298,Neural Network
154,Accuracy,0.990667623833453,Neural Network
155,F1Score,0.9635854341736695,Neural Network
156,Precision,0.9720670391061452,Naive Bayesian
157,Recall,0.9405405405405406,Naive Bayesian
158,Accuracy,0.9885139985642498,Naive Bayesian
159,F1Score,0.9560439560439562,Naive Bayesian
1 Measure Value Method
2 0 Precision 0.8702702702702703 Decision Tree
3 1 Recall 0.8702702702702703 Decision Tree
4 2 Accuracy 0.9655419956927495 Decision Tree
5 3 F1Score 0.8702702702702703 Decision Tree
6 4 Precision 0.9941176470588236 Logistic Regression
7 5 Recall 0.9135135135135135 Logistic Regression
8 6 Accuracy 0.9877961234745154 Logistic Regression
9 7 F1Score 0.9521126760563381 Logistic Regression
10 8 Precision 1.0 Neural Network
11 9 Recall 0.9459459459459459 Neural Network
12 10 Accuracy 0.9928212491026561 Neural Network
13 11 F1Score 0.9722222222222222 Neural Network
14 12 Precision 0.9720670391061452 Naive Bayesian
15 13 Recall 0.9405405405405406 Naive Bayesian
16 14 Accuracy 0.9885139985642498 Naive Bayesian
17 15 F1Score 0.9560439560439562 Naive Bayesian
18 16 Precision 0.8375634517766497 Decision Tree
19 17 Recall 0.8918918918918919 Decision Tree
20 18 Accuracy 0.9626704953338119 Decision Tree
21 19 F1Score 0.8638743455497383 Decision Tree
22 20 Precision 0.9941176470588236 Logistic Regression
23 21 Recall 0.9135135135135135 Logistic Regression
24 22 Accuracy 0.9877961234745154 Logistic Regression
25 23 F1Score 0.9521126760563381 Logistic Regression
26 24 Precision 1.0 Neural Network
27 25 Recall 0.9351351351351351 Neural Network
28 26 Accuracy 0.9913854989231874 Neural Network
29 27 F1Score 0.9664804469273743 Neural Network
30 28 Precision 0.9720670391061452 Naive Bayesian
31 29 Recall 0.9405405405405406 Naive Bayesian
32 30 Accuracy 0.9885139985642498 Naive Bayesian
33 31 F1Score 0.9560439560439562 Naive Bayesian
34 32 Precision 0.8702702702702703 Decision Tree
35 33 Recall 0.8702702702702703 Decision Tree
36 34 Accuracy 0.9655419956927495 Decision Tree
37 35 F1Score 0.8702702702702703 Decision Tree
38 36 Precision 0.9941176470588236 Logistic Regression
39 37 Recall 0.9135135135135135 Logistic Regression
40 38 Accuracy 0.9877961234745154 Logistic Regression
41 39 F1Score 0.9521126760563381 Logistic Regression
42 40 Precision 1.0 Neural Network
43 41 Recall 0.9351351351351351 Neural Network
44 42 Accuracy 0.9913854989231874 Neural Network
45 43 F1Score 0.9664804469273743 Neural Network
46 44 Precision 0.9720670391061452 Naive Bayesian
47 45 Recall 0.9405405405405406 Naive Bayesian
48 46 Accuracy 0.9885139985642498 Naive Bayesian
49 47 F1Score 0.9560439560439562 Naive Bayesian
50 48 Precision 0.8797814207650273 Decision Tree
51 49 Recall 0.8702702702702703 Decision Tree
52 50 Accuracy 0.9669777458722182 Decision Tree
53 51 F1Score 0.875 Decision Tree
54 52 Precision 0.9941176470588236 Logistic Regression
55 53 Recall 0.9135135135135135 Logistic Regression
56 54 Accuracy 0.9877961234745154 Logistic Regression
57 55 F1Score 0.9521126760563381 Logistic Regression
58 56 Precision 0.988950276243094 Neural Network
59 57 Recall 0.9675675675675676 Neural Network
60 58 Accuracy 0.994256999282125 Neural Network
61 59 F1Score 0.9781420765027322 Neural Network
62 60 Precision 0.9720670391061452 Naive Bayesian
63 61 Recall 0.9405405405405406 Naive Bayesian
64 62 Accuracy 0.9885139985642498 Naive Bayesian
65 63 F1Score 0.9560439560439562 Naive Bayesian
66 64 Precision 0.8757062146892656 Decision Tree
67 65 Recall 0.8378378378378378 Decision Tree
68 66 Accuracy 0.9626704953338119 Decision Tree
69 67 F1Score 0.856353591160221 Decision Tree
70 68 Precision 0.9941176470588236 Logistic Regression
71 69 Recall 0.9135135135135135 Logistic Regression
72 70 Accuracy 0.9877961234745154 Logistic Regression
73 71 F1Score 0.9521126760563381 Logistic Regression
74 72 Precision 1.0 Neural Network
75 73 Recall 0.9351351351351351 Neural Network
76 74 Accuracy 0.9913854989231874 Neural Network
77 75 F1Score 0.9664804469273743 Neural Network
78 76 Precision 0.9720670391061452 Naive Bayesian
79 77 Recall 0.9405405405405406 Naive Bayesian
80 78 Accuracy 0.9885139985642498 Naive Bayesian
81 79 F1Score 0.9560439560439562 Naive Bayesian
82 80 Precision 0.8481675392670157 Decision Tree
83 81 Recall 0.8756756756756757 Decision Tree
84 82 Accuracy 0.9626704953338119 Decision Tree
85 83 F1Score 0.8617021276595744 Decision Tree
86 84 Precision 0.9941176470588236 Logistic Regression
87 85 Recall 0.9135135135135135 Logistic Regression
88 86 Accuracy 0.9877961234745154 Logistic Regression
89 87 F1Score 0.9521126760563381 Logistic Regression
90 88 Precision 1.0 Neural Network
91 89 Recall 0.9351351351351351 Neural Network
92 90 Accuracy 0.9913854989231874 Neural Network
93 91 F1Score 0.9664804469273743 Neural Network
94 92 Precision 0.9720670391061452 Naive Bayesian
95 93 Recall 0.9405405405405406 Naive Bayesian
96 94 Accuracy 0.9885139985642498 Naive Bayesian
97 95 F1Score 0.9560439560439562 Naive Bayesian
98 96 Precision 0.8663101604278075 Decision Tree
99 97 Recall 0.8756756756756757 Decision Tree
100 98 Accuracy 0.9655419956927495 Decision Tree
101 99 F1Score 0.8709677419354839 Decision Tree
102 100 Precision 0.9941176470588236 Logistic Regression
103 101 Recall 0.9135135135135135 Logistic Regression
104 102 Accuracy 0.9877961234745154 Logistic Regression
105 103 F1Score 0.9521126760563381 Logistic Regression
106 104 Precision 1.0 Neural Network
107 105 Recall 0.9297297297297298 Neural Network
108 106 Accuracy 0.990667623833453 Neural Network
109 107 F1Score 0.9635854341736695 Neural Network
110 108 Precision 0.9720670391061452 Naive Bayesian
111 109 Recall 0.9405405405405406 Naive Bayesian
112 110 Accuracy 0.9885139985642498 Naive Bayesian
113 111 F1Score 0.9560439560439562 Naive Bayesian
114 112 Precision 0.8333333333333334 Decision Tree
115 113 Recall 0.8918918918918919 Decision Tree
116 114 Accuracy 0.9619526202440776 Decision Tree
117 115 F1Score 0.8616187989556137 Decision Tree
118 116 Precision 0.9941176470588236 Logistic Regression
119 117 Recall 0.9135135135135135 Logistic Regression
120 118 Accuracy 0.9877961234745154 Logistic Regression
121 119 F1Score 0.9521126760563381 Logistic Regression
122 120 Precision 1.0 Neural Network
123 121 Recall 0.9297297297297298 Neural Network
124 122 Accuracy 0.990667623833453 Neural Network
125 123 F1Score 0.9635854341736695 Neural Network
126 124 Precision 0.9720670391061452 Naive Bayesian
127 125 Recall 0.9405405405405406 Naive Bayesian
128 126 Accuracy 0.9885139985642498 Naive Bayesian
129 127 F1Score 0.9560439560439562 Naive Bayesian
130 128 Precision 0.8617021276595744 Decision Tree
131 129 Recall 0.8756756756756757 Decision Tree
132 130 Accuracy 0.964824120603015 Decision Tree
133 131 F1Score 0.8686327077747988 Decision Tree
134 132 Precision 0.9941176470588236 Logistic Regression
135 133 Recall 0.9135135135135135 Logistic Regression
136 134 Accuracy 0.9877961234745154 Logistic Regression
137 135 F1Score 0.9521126760563381 Logistic Regression
138 136 Precision 1.0 Neural Network
139 137 Recall 0.9243243243243243 Neural Network
140 138 Accuracy 0.9899497487437185 Neural Network
141 139 F1Score 0.9606741573033708 Neural Network
142 140 Precision 0.9720670391061452 Naive Bayesian
143 141 Recall 0.9405405405405406 Naive Bayesian
144 142 Accuracy 0.9885139985642498 Naive Bayesian
145 143 F1Score 0.9560439560439562 Naive Bayesian
146 144 Precision 0.8901098901098901 Decision Tree
147 145 Recall 0.8756756756756757 Decision Tree
148 146 Accuracy 0.9691313711414213 Decision Tree
149 147 F1Score 0.8828337874659401 Decision Tree
150 148 Precision 0.9941176470588236 Logistic Regression
151 149 Recall 0.9135135135135135 Logistic Regression
152 150 Accuracy 0.9877961234745154 Logistic Regression
153 151 F1Score 0.9521126760563381 Logistic Regression
154 152 Precision 1.0 Neural Network
155 153 Recall 0.9297297297297298 Neural Network
156 154 Accuracy 0.990667623833453 Neural Network
157 155 F1Score 0.9635854341736695 Neural Network
158 156 Precision 0.9720670391061452 Naive Bayesian
159 157 Recall 0.9405405405405406 Naive Bayesian
160 158 Accuracy 0.9885139985642498 Naive Bayesian
161 159 F1Score 0.9560439560439562 Naive Bayesian