5.4 KiB
5.4 KiB
| 1 | Measure | Value | Method | |
|---|---|---|---|---|
| 2 | 0 | Precision | 0.8333333333333334 | Decision Tree |
| 3 | 1 | Recall | 0.8648648648648649 | Decision Tree |
| 4 | 2 | Accuracy | 0.95908111988514 | Decision Tree |
| 5 | 3 | F1Score | 0.8488063660477454 | Decision Tree |
| 6 | 4 | Precision | 0.9941176470588236 | Logistic Regression |
| 7 | 5 | Recall | 0.9135135135135135 | Logistic Regression |
| 8 | 6 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 9 | 7 | F1Score | 0.9521126760563381 | Logistic Regression |
| 10 | 8 | Precision | 1.0 | Neural Network |
| 11 | 9 | Recall | 0.9297297297297298 | Neural Network |
| 12 | 10 | Accuracy | 0.990667623833453 | Neural Network |
| 13 | 11 | F1Score | 0.9635854341736695 | Neural Network |
| 14 | 12 | Precision | 0.8631578947368421 | Decision Tree |
| 15 | 13 | Recall | 0.8864864864864865 | Decision Tree |
| 16 | 14 | Accuracy | 0.9662598707824839 | Decision Tree |
| 17 | 15 | F1Score | 0.8746666666666667 | Decision Tree |
| 18 | 16 | Precision | 0.9941176470588236 | Logistic Regression |
| 19 | 17 | Recall | 0.9135135135135135 | Logistic Regression |
| 20 | 18 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 21 | 19 | F1Score | 0.9521126760563381 | Logistic Regression |
| 22 | 20 | Precision | 1.0 | Neural Network |
| 23 | 21 | Recall | 0.9297297297297298 | Neural Network |
| 24 | 22 | Accuracy | 0.990667623833453 | Neural Network |
| 25 | 23 | F1Score | 0.9635854341736695 | Neural Network |
| 26 | 24 | Precision | 0.8465608465608465 | Decision Tree |
| 27 | 25 | Recall | 0.8648648648648649 | Decision Tree |
| 28 | 26 | Accuracy | 0.9612347451543432 | Decision Tree |
| 29 | 27 | F1Score | 0.8556149732620321 | Decision Tree |
| 30 | 28 | Precision | 0.9941176470588236 | Logistic Regression |
| 31 | 29 | Recall | 0.9135135135135135 | Logistic Regression |
| 32 | 30 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 33 | 31 | F1Score | 0.9521126760563381 | Logistic Regression |
| 34 | 32 | Precision | 1.0 | Neural Network |
| 35 | 33 | Recall | 0.9351351351351351 | Neural Network |
| 36 | 34 | Accuracy | 0.9913854989231874 | Neural Network |
| 37 | 35 | F1Score | 0.9664804469273743 | Neural Network |
| 38 | 36 | Precision | 0.8743169398907104 | Decision Tree |
| 39 | 37 | Recall | 0.8648648648648649 | Decision Tree |
| 40 | 38 | Accuracy | 0.9655419956927495 | Decision Tree |
| 41 | 39 | F1Score | 0.8695652173913042 | Decision Tree |
| 42 | 40 | Precision | 0.9941176470588236 | Logistic Regression |
| 43 | 41 | Recall | 0.9135135135135135 | Logistic Regression |
| 44 | 42 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 45 | 43 | F1Score | 0.9521126760563381 | Logistic Regression |
| 46 | 44 | Precision | 1.0 | Neural Network |
| 47 | 45 | Recall | 0.9297297297297298 | Neural Network |
| 48 | 46 | Accuracy | 0.990667623833453 | Neural Network |
| 49 | 47 | F1Score | 0.9635854341736695 | Neural Network |
| 50 | 48 | Precision | 0.8578947368421053 | Decision Tree |
| 51 | 49 | Recall | 0.8810810810810811 | Decision Tree |
| 52 | 50 | Accuracy | 0.964824120603015 | Decision Tree |
| 53 | 51 | F1Score | 0.8693333333333333 | Decision Tree |
| 54 | 52 | Precision | 0.9941176470588236 | Logistic Regression |
| 55 | 53 | Recall | 0.9135135135135135 | Logistic Regression |
| 56 | 54 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 57 | 55 | F1Score | 0.9521126760563381 | Logistic Regression |
| 58 | 56 | Precision | 0.9942857142857143 | Neural Network |
| 59 | 57 | Recall | 0.9405405405405406 | Neural Network |
| 60 | 58 | Accuracy | 0.9913854989231874 | Neural Network |
| 61 | 59 | F1Score | 0.9666666666666667 | Neural Network |
| 62 | 60 | Precision | 0.8624338624338624 | Decision Tree |
| 63 | 61 | Recall | 0.8810810810810811 | Decision Tree |
| 64 | 62 | Accuracy | 0.9655419956927495 | Decision Tree |
| 65 | 63 | F1Score | 0.8716577540106951 | Decision Tree |
| 66 | 64 | Precision | 0.9941176470588236 | Logistic Regression |
| 67 | 65 | Recall | 0.9135135135135135 | Logistic Regression |
| 68 | 66 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 69 | 67 | F1Score | 0.9521126760563381 | Logistic Regression |
| 70 | 68 | Precision | 0.9942528735632183 | Neural Network |
| 71 | 69 | Recall | 0.9351351351351351 | Neural Network |
| 72 | 70 | Accuracy | 0.990667623833453 | Neural Network |
| 73 | 71 | F1Score | 0.9637883008356545 | Neural Network |
| 74 | 72 | Precision | 0.8695652173913043 | Decision Tree |
| 75 | 73 | Recall | 0.8648648648648649 | Decision Tree |
| 76 | 74 | Accuracy | 0.964824120603015 | Decision Tree |
| 77 | 75 | F1Score | 0.8672086720867209 | Decision Tree |
| 78 | 76 | Precision | 0.9941176470588236 | Logistic Regression |
| 79 | 77 | Recall | 0.9135135135135135 | Logistic Regression |
| 80 | 78 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 81 | 79 | F1Score | 0.9521126760563381 | Logistic Regression |
| 82 | 80 | Precision | 1.0 | Neural Network |
| 83 | 81 | Recall | 0.9297297297297298 | Neural Network |
| 84 | 82 | Accuracy | 0.990667623833453 | Neural Network |
| 85 | 83 | F1Score | 0.9635854341736695 | Neural Network |
| 86 | 84 | Precision | 0.8797814207650273 | Decision Tree |
| 87 | 85 | Recall | 0.8702702702702703 | Decision Tree |
| 88 | 86 | Accuracy | 0.9669777458722182 | Decision Tree |
| 89 | 87 | F1Score | 0.875 | Decision Tree |
| 90 | 88 | Precision | 0.9941176470588236 | Logistic Regression |
| 91 | 89 | Recall | 0.9135135135135135 | Logistic Regression |
| 92 | 90 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 93 | 91 | F1Score | 0.9521126760563381 | Logistic Regression |
| 94 | 92 | Precision | 0.9942528735632183 | Neural Network |
| 95 | 93 | Recall | 0.9351351351351351 | Neural Network |
| 96 | 94 | Accuracy | 0.990667623833453 | Neural Network |
| 97 | 95 | F1Score | 0.9637883008356545 | Neural Network |
| 98 | 96 | Precision | 0.8601036269430051 | Decision Tree |
| 99 | 97 | Recall | 0.8972972972972973 | Decision Tree |
| 100 | 98 | Accuracy | 0.9669777458722182 | Decision Tree |
| 101 | 99 | F1Score | 0.8783068783068783 | Decision Tree |
| 102 | 100 | Precision | 0.9941176470588236 | Logistic Regression |
| 103 | 101 | Recall | 0.9135135135135135 | Logistic Regression |
| 104 | 102 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 105 | 103 | F1Score | 0.9521126760563381 | Logistic Regression |
| 106 | 104 | Precision | 0.9942196531791907 | Neural Network |
| 107 | 105 | Recall | 0.9297297297297298 | Neural Network |
| 108 | 106 | Accuracy | 0.9899497487437185 | Neural Network |
| 109 | 107 | F1Score | 0.9608938547486033 | Neural Network |
| 110 | 108 | Precision | 0.8609625668449198 | Decision Tree |
| 111 | 109 | Recall | 0.8702702702702703 | Decision Tree |
| 112 | 110 | Accuracy | 0.9641062455132807 | Decision Tree |
| 113 | 111 | F1Score | 0.8655913978494624 | Decision Tree |
| 114 | 112 | Precision | 0.9941176470588236 | Logistic Regression |
| 115 | 113 | Recall | 0.9135135135135135 | Logistic Regression |
| 116 | 114 | Accuracy | 0.9877961234745154 | Logistic Regression |
| 117 | 115 | F1Score | 0.9521126760563381 | Logistic Regression |
| 118 | 116 | Precision | 1.0 | Neural Network |
| 119 | 117 | Recall | 0.9297297297297298 | Neural Network |
| 120 | 118 | Accuracy | 0.990667623833453 | Neural Network |
| 121 | 119 | F1Score | 0.9635854341736695 | Neural Network |